PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1255.
Published online 2010 May 8. doi:  10.1107/S1600536810012237
PMCID: PMC2979503

4-Nitro-2-phenoxy­aniline

Abstract

In the title compound, C12H10N2O3, the oxygen atom bridging the two aromatic rings is in a synperiplanar (+sp) conformation. The dihedral angle between the aromatic rings is 71.40 (12)°. In the crystal, mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the pharmacological properties of nitro-2-phenoxy­aniline, see: Moore & Harrington (1974 [triangle]); Prasad et al. (2005 [triangle]). For the herbicidal applications of biphenyl ether derivatives, see: Yu et al., (2008 [triangle]). For the applications of Schiff bases derived from aromatic amines, see: Singh et al. (1975 [triangle]); Cimerman et al. (2000 [triangle]). For their biological and pharmacological acitvity, see: Singh et al. (1975 [triangle]); Cimerman et al. (2000 [triangle]); Shah et al. (1992 [triangle]); Pandeya et al. (1999 [triangle]); More et al. (2001 [triangle]). For the preparation of 4-nitro-2-phenoxy­aniline, see: Shreenivasa et al. (2009 [triangle]). For a related structure, see: Naveen et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1255-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O3
  • M r = 230.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1255-efi1.jpg
  • a = 10.4100 (12) Å
  • b = 15.6570 (18) Å
  • c = 6.9600 (17) Å
  • β = 103.406 (4)°
  • V = 1103.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.32 × 0.3 × 0.25 mm

Data collection

  • MacScience DIPLabo 32001 diffractometer
  • 3336 measured reflections
  • 1889 independent reflections
  • 1498 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.167
  • S = 1.09
  • 1889 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: XPRESS (MacScience, 2002 [triangle]); cell refinement: SCALEPACK (Ot­win­owski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS7 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012237/fj2288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012237/fj2288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the DST and Government of India project SP/I2/FOO/93 and the University of Mysore for financial assistance. MM would like to thank the University of Mysore for awarding a project under the head DV3/136/2007–2008/24.09.09.

supplementary crystallographic information

Comment

The phenoxy anilines are versatile intermediates for synthesizing several pharmaceutical drugs i.e. Nimesulide, Ampxipine and Loxapine. The Nitro-2-phenoxyaniline is an intermediate for the synthesis of Nimesulide and it was probably the first COX-2 selective non-steroidal anti inflammatory drug (NSAID) identified with this key pharmacological properties (Moore & Harrington, 1974; Prasad et al. 2005). It is a unique molecule with twin aromatic ring structure. The nitro-2-phenoxyaniline is a derivative of biphenyl ether. More generally, biphenyl ether derivatives have many biological, herbicidal (Yu et al., 2008) and organic chemistry applications. Schiff bases derived from aromatic amines have a wide variety of applications in many fields, viz., biological, inorganic and anlytical chemistry (Singh et al., 1975; Cimerman et al., 2000). They are known to exhibit potent antibacterial, anticonvulsant, anti-inflammatory (Shah et al. 1992), anticancer (Pandeya et al., 1999), anti-hypertensive and hypnotic (More et al., 2001) activities. With this background, the title compound (I), was synthesized and we report its crystal structure here.

A perspective view of (I) is shown in Fig. 1. The two aromatic rings are not coplanar. This is confirmed by the dihedral angle value of 71.38 (12)° between two six-membered rings. The oxygen atom connecting the two aromatic rings is in syn-periplanar (sp) conformation as indicated by the torsion angle value of 13.0 (3)°. The nitro group lies in the plane of the aniline ring as indicated by the C2—C1—N7—O8 and C6—C1—N7—O9 torsion angles of -176.1 (2)° and -174.4 (2)°, respectively. These values are different from the values reported earlier (Naveen S. et al. 2006). The structure exhibits both inter and intramolecular N—H···O interaction. The intermolecular N10—H10A···O9 interaction has a length of 2.17Å and angle of 170° with symmetry codes 3/2-x,-1/2+y,1-z. The molecules exhibit layered stackings when viewd down the 'b' axis as shown in Fig. 2.

Experimental

The 4-nitro-2-phenoxyaniline was prepared by condensation of o-chloronitrobenzene with phenol followed by acetylation and nitration (Shreenivasa et al., 2009). The final product obtained was recrystallized using ethanol as a solvent. Colorless crystals were appeared after 4 days by slow evaporation.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.

Figures

Fig. 1.
A view of (I), with 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the molecule viewed down the 'b' axis. The dotted lines represents the hydrogen bonds.

Crystal data

C12H10N2O3F(000) = 480
Mr = 230.22Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14613 reflections
a = 10.4100 (12) Åθ = 2.4–32.5°
b = 15.6570 (18) ŵ = 0.10 mm1
c = 6.9600 (17) ÅT = 293 K
β = 103.406 (4)°Block, colorless
V = 1103.5 (3) Å30.32 × 0.3 × 0.25 mm
Z = 4

Data collection

MacScience DIPLabo 32001 diffractometer1498 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 25.0°, θmin = 2.4°
Detector resolution: 10.0 pixels mm-1h = −12→12
ω scank = −18→18
3336 measured reflectionsl = −8→8
1889 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0811P)2 + 0.2121P] where P = (Fo2 + 2Fc2)/3
1889 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4153 (2)0.11783 (12)0.1849 (3)0.0575 (5)
C20.4872 (2)0.04830 (14)0.2715 (3)0.0624 (5)
H20.56410.05610.36920.075*
C30.4446 (2)−0.03248 (13)0.2129 (3)0.0618 (5)
H30.4920−0.07940.27370.074*
C40.3320 (2)−0.04544 (12)0.0647 (3)0.0578 (5)
C50.2615 (2)0.02705 (13)−0.0233 (3)0.0637 (6)
C60.3010 (2)0.10777 (13)0.0368 (3)0.0643 (6)
H60.25270.1550−0.02000.077*
N70.46086 (19)0.20258 (12)0.2446 (3)0.0696 (5)
O80.39280 (19)0.26405 (10)0.1748 (3)0.0929 (6)
O90.56703 (18)0.21113 (11)0.3643 (3)0.0956 (6)
N100.28775 (19)−0.12433 (11)0.0016 (3)0.0742 (6)
H10A0.3300−0.16890.05420.089*
H10B0.2174−0.1298−0.09090.089*
O110.15146 (19)0.00647 (10)−0.1675 (3)0.0991 (7)
C120.0845 (2)0.06917 (13)−0.2929 (3)0.0710 (6)
C13−0.0425 (2)0.08508 (17)−0.2880 (4)0.0802 (7)
H13−0.08040.0568−0.19740.096*
C14−0.1149 (3)0.1424 (2)−0.4153 (5)0.0973 (9)
H14−0.20220.1528−0.41100.117*
C15−0.0624 (4)0.18388 (18)−0.5465 (5)0.1026 (10)
H15−0.11270.2234−0.63180.123*
C160.0659 (4)0.16812 (19)−0.5551 (4)0.1079 (11)
H160.10240.1967−0.64690.129*
C170.1418 (3)0.10918 (18)−0.4262 (5)0.0934 (8)
H170.22870.0976−0.43090.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0635 (11)0.0525 (10)0.0538 (11)0.0002 (9)0.0079 (9)−0.0054 (8)
C20.0669 (12)0.0677 (13)0.0474 (10)0.0017 (10)0.0026 (9)0.0018 (9)
C30.0713 (13)0.0586 (11)0.0523 (11)0.0093 (9)0.0079 (9)0.0073 (9)
C40.0647 (12)0.0528 (11)0.0553 (11)0.0008 (9)0.0125 (9)0.0022 (8)
C50.0613 (12)0.0559 (11)0.0657 (12)−0.0024 (9)−0.0018 (10)0.0025 (9)
C60.0619 (12)0.0545 (11)0.0690 (13)0.0044 (9)−0.0003 (10)0.0015 (9)
N70.0731 (11)0.0609 (11)0.0687 (11)0.0001 (9)0.0042 (9)−0.0105 (9)
O80.0977 (12)0.0569 (9)0.1100 (14)0.0061 (9)−0.0044 (10)−0.0108 (9)
O90.0884 (12)0.0789 (11)0.0993 (13)−0.0071 (9)−0.0195 (10)−0.0197 (10)
N100.0811 (12)0.0523 (10)0.0814 (13)−0.0015 (8)0.0031 (10)0.0031 (9)
O110.0898 (12)0.0568 (9)0.1187 (15)−0.0097 (8)−0.0408 (11)0.0116 (9)
C120.0720 (14)0.0539 (11)0.0716 (14)−0.0052 (10)−0.0151 (11)−0.0015 (10)
C130.0787 (15)0.0843 (16)0.0693 (14)0.0030 (13)0.0001 (11)−0.0023 (12)
C140.0888 (18)0.0959 (19)0.0906 (19)0.0195 (15)−0.0131 (15)−0.0042 (16)
C150.119 (2)0.0790 (17)0.0801 (18)0.0069 (17)−0.0377 (17)−0.0022 (15)
C160.148 (3)0.088 (2)0.0770 (18)−0.031 (2)0.0041 (19)0.0114 (15)
C170.0778 (16)0.0823 (17)0.113 (2)−0.0124 (13)0.0075 (15)−0.0026 (16)

Geometric parameters (Å, °)

C1—C21.378 (3)N10—H10A0.8600
C1—C61.390 (3)N10—H10B0.8600
C1—N71.438 (3)O11—C121.389 (3)
C2—C31.371 (3)C12—C131.353 (4)
C2—H20.9300C12—C171.367 (4)
C3—C41.385 (3)C13—C141.359 (4)
C3—H30.9300C13—H130.9300
C4—N101.355 (3)C14—C151.337 (5)
C4—C51.412 (3)C14—H140.9300
C5—C61.365 (3)C15—C161.374 (5)
C5—O111.375 (3)C15—H150.9300
C6—H60.9300C16—C171.397 (4)
N7—O81.227 (2)C16—H160.9300
N7—O91.227 (2)C17—H170.9300
C2—C1—C6121.29 (18)C4—N10—H10B120.0
C2—C1—N7119.55 (18)H10A—N10—H10B120.0
C6—C1—N7119.14 (18)C5—O11—C12120.32 (16)
C3—C2—C1119.54 (19)C13—C12—C17121.1 (2)
C3—C2—H2120.2C13—C12—O11117.8 (2)
C1—C2—H2120.2C17—C12—O11121.0 (2)
C2—C3—C4121.10 (18)C12—C13—C14120.2 (3)
C2—C3—H3119.4C12—C13—H13119.9
C4—C3—H3119.4C14—C13—H13119.9
N10—C4—C3122.70 (19)C15—C14—C13120.9 (3)
N10—C4—C5119.24 (19)C15—C14—H14119.6
C3—C4—C5118.06 (18)C13—C14—H14119.6
C6—C5—O11125.60 (19)C14—C15—C16119.9 (3)
C6—C5—C4121.45 (19)C14—C15—H15120.1
O11—C5—C4112.93 (18)C16—C15—H15120.1
C5—C6—C1118.53 (19)C15—C16—C17120.1 (3)
C5—C6—H6120.7C15—C16—H16119.9
C1—C6—H6120.7C17—C16—H16119.9
O8—N7—O9121.99 (19)C12—C17—C16117.9 (3)
O8—N7—C1119.21 (17)C12—C17—H17121.1
O9—N7—C1118.80 (18)C16—C17—H17121.1
C4—N10—H10A120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N10—H10A···O9i0.862.173.023 (3)170

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2288).

References

  • Cimerman, Z., Miljanić, S. & Galić, N. (2000). Croat. Chem. Acta, 73, 81–95.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • MacScience (2002). XPRESS MacScience Co. Ltd, Yokohama, Japan.
  • Moore, G. G. L. & Harrington, J. K. (1974). US Patent No. 3840597.
  • More, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc.78, 474–475.
  • Naveen, S., Anil Kumar, K., Channe Gowda, D., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o3790–o3791.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Pharm. Soc.9, 25–31. [PubMed]
  • Prasad, A., Sharma, M. L., Kanwar, S., Rathee, R. & Sharma, S. D. (2005). J. Sci. Ind. Res.64, 756–760.
  • Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc.69, 590–596.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shreenivasa, M. T., Chetan, B. P. & Bhat, A. R. (2009). J. Pharm. Sci. Technol.1, 88–94.
  • Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc.52, 958–959.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yu, H.-B., Wu, H.-F., Cui, D.-L. & Li, B. (2008). Ark. Kemi, 2, 94–104.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography