PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1469.
Published online 2010 May 26. doi:  10.1107/S1600536810017940
PMCID: PMC2979495

3-Phenyl-1H-pyrrolo[2,1-c][1,4]oxazin-1-one

Abstract

The mol­ecule of the title compound, C13H9NO2, is slightly twisted with a dihedral angle of 4.85 (9)° between the nine-membered ring system and the phenyl ring. The nine non-H atoms of the 1H-pyrrolo[2,1-c][1,4]oxazin-1-one system are coplanar [r.m.s. deviation = 0.0122 (2) Å]. In the crystal, weak inter­molecular C—H(...)O inter­actions link mol­ecules into chains along [1An external file that holds a picture, illustration, etc.
Object name is e-66-o1469-efi1.jpg0]. The crystal studied was an inversion twin with a 0.48624 (9):0.51376 (9) domain ratio.

Related literature

For the biological activity and applications of pyrrolo[1,2-a]pyrazine derivatives, see: Bélanger et al. (1983 [triangle]); Fu et al. (2002 [triangle]); Micheli et al. (2008 [triangle]). For a related structure, see: Khan et al. (2010 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1469-scheme1.jpg

Experimental

Crystal data

  • C13H9NO2
  • M r = 211.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1469-efi2.jpg
  • a = 5.870 (1) Å
  • b = 3.8345 (7) Å
  • c = 21.733 (4) Å
  • β = 91.059 (7)°
  • V = 489.09 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 113 K
  • 0.22 × 0.18 × 0.08 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.979, T max = 0.992
  • 4358 measured reflections
  • 1222 independent reflections
  • 1092 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.10
  • 1222 reflections
  • 147 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017940/rz2449sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017940/rz2449Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

STK acknowledges funding from the Industrial Linkage Programme of Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories, Pakistan. He also thanks Dr Song Haibin of the State Key Laboratory of Elemento-Organic Chemistry, Nankai University, for the X-ray data collection. PY is grateful to Tianjin University of Science & Technology for a research grant (No. 2009 0431).

supplementary crystallographic information

Comment

A series of pyrrolo[1,2-a]pyrazine compounds show potent and selective non-competitive mGluR5 antagonists properties (Micheli et al., 2008). We previously reported the synthesis and crystal structure of 3-methyl-1H-pyrrolo[2,1-c][1,4]oxazin-1-one (I) (Khan et al., 2010). The title compound (II), which was designed by changing the methyl substituent in (I) to phenyl, is a new key intermediate which can be used as a precursor for the syntheses of muscle relaxant agents (Bélanger et al., 1983) and other biological active compounds (Fu et al., 2002).

The molecule of title compound (Fig. 1) is slightly twisted, the dihedral angle between this nine membered ring system and phenyl ring being 4.85 (9)° and the O1–C6–C8–C9 torsion angle 5.0 (3)°. The nine non-hydrogen atoms of the 1H-pyrrolo[2,1-c][1,4]oxazin-1-one ring system are coplanar with a r.m.s. of 0.0122 (2) Å. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with the related structure (Khan et al., 2010). In the crystal structure (Fig. 2), weak intermolecular C—H···O interactions (Table 1) link the molecules into chains along [110]. These chains are stacked along the b axis.

Experimental

A solution of α-bromo acetophenone (2.37 g, 11.91 mmol) in acetone (25 ml) was dropwise added through a dropping funnel to a slurry of 2,2,2-trichloro-1-(lH-pyrrol-2-yl)ethanone (1.69 g, 7.95 mmol), potassium carbonate (1.98 g, 14.31 mmol) and acetone (20 ml) at room temperature in a 100 ml reaction flask. The reaction mixture was refluxed for 4 h. The solid was then removed by filtration and washed with acetone. The filtrate was concentrated under reduced pressure by rotary evaporator, the residue was partitioned between water (20 ml) and ethyl acetate (40 ml) in a separatory funnel (100 ml). The organic layer was separated and the aqueous phase was washed with ethyl acetate (30 ml x 2). The combined organic layers were washed successively with water (20 ml x 3) and brine solution and dried over anhydrous MgSO4. After filtration, the solvent was removed by rotary evaporator to obtain the oily residue (1.90 g) which was purified by flash column chromatography (petroleum ether:ethyl acetate, 4:1 v/v) to afford the desired compound as white solid (1.05 g, yield 62.5 %). Colourless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethyl acetate by slow evaporation of the solvent at room temperature after several days.

Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å, and were included in the refinement in a riding-model approximation, with Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak and the deepest hole are located at 0.69 Å and 0.93 Å from atom C4. The crystal studied was an inversion twin, with a refined BASF ratio of 0.48624 (9)/0.51376 (9). The final refinement was carried out with Friedel pairs merged.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewd along the b axis. Intermoilecular C—H···O interactions are drawn as dashed lines.

Crystal data

C13H9NO2F(000) = 220
Mr = 211.21Dx = 1.434 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1222 reflections
a = 5.870 (1) Åθ = 2.8–27.0°
b = 3.8345 (7) ŵ = 0.10 mm1
c = 21.733 (4) ÅT = 113 K
β = 91.059 (7)°Needle, colourless
V = 489.09 (15) Å30.22 × 0.18 × 0.08 mm
Z = 2

Data collection

Rigaku Saturn CCD area-detector diffractometer1222 independent reflections
Radiation source: rotating anode1092 reflections with I > 2σ(I)
multilayerRint = 0.032
Detector resolution: 14.63 pixels mm-1θmax = 27.0°, θmin = 2.8°
ω and [var phi] scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −4→4
Tmin = 0.979, Tmax = 0.992l = −26→27
4358 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1222 reflectionsΔρmax = 0.20 e Å3
147 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4797 (2)0.4846 (4)0.25405 (5)0.0201 (4)
O20.7147 (2)0.7726 (4)0.31664 (6)0.0273 (4)
N10.1877 (2)0.3508 (4)0.34783 (7)0.0181 (4)
C10.0686 (3)0.3143 (6)0.40070 (8)0.0219 (5)
H1−0.07630.20670.40440.026*
C20.1959 (3)0.4614 (6)0.44782 (8)0.0232 (5)
H20.15460.47000.48990.028*
C30.3965 (3)0.5960 (6)0.42329 (9)0.0230 (5)
H30.51480.71400.44530.028*
C40.3895 (3)0.5244 (5)0.36106 (8)0.0186 (4)
C50.5406 (3)0.6064 (6)0.31182 (8)0.0198 (4)
C60.2775 (3)0.3039 (6)0.24323 (8)0.0177 (4)
C70.1330 (3)0.2396 (6)0.28844 (8)0.0189 (4)
H7−0.00570.11920.28020.023*
C80.2448 (3)0.1991 (6)0.17857 (8)0.0186 (4)
C90.4150 (3)0.2573 (6)0.13567 (8)0.0223 (5)
H90.55400.36510.14830.027*
C100.3819 (4)0.1584 (6)0.07468 (9)0.0258 (5)
H100.49870.19920.04590.031*
C110.1813 (4)0.0015 (6)0.05544 (8)0.0242 (5)
H110.1596−0.06510.01360.029*
C120.0115 (3)−0.0580 (6)0.09787 (8)0.0248 (5)
H12−0.1273−0.16510.08490.030*
C130.0429 (3)0.0377 (6)0.15879 (8)0.0220 (5)
H13−0.0738−0.00680.18750.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0165 (7)0.0229 (8)0.0210 (6)−0.0045 (6)0.0017 (5)0.0005 (7)
O20.0190 (7)0.0308 (9)0.0321 (8)−0.0093 (7)−0.0014 (5)0.0000 (7)
N10.0163 (8)0.0198 (10)0.0183 (8)−0.0017 (7)0.0007 (6)0.0014 (7)
C10.0206 (10)0.0251 (12)0.0202 (9)0.0008 (9)0.0047 (7)0.0043 (9)
C20.0263 (10)0.0249 (12)0.0185 (9)0.0048 (10)0.0025 (7)0.0021 (9)
C30.0233 (10)0.0222 (12)0.0234 (9)0.0015 (9)−0.0033 (7)−0.0017 (9)
C40.0161 (9)0.0173 (12)0.0224 (9)0.0000 (8)−0.0019 (7)0.0001 (9)
C50.0183 (10)0.0170 (11)0.0240 (9)0.0002 (9)−0.0017 (7)0.0007 (9)
C60.0146 (9)0.0166 (11)0.0220 (9)−0.0019 (8)−0.0010 (7)0.0017 (8)
C70.0172 (9)0.0207 (11)0.0187 (8)−0.0025 (8)−0.0012 (7)0.0002 (9)
C80.0193 (9)0.0168 (11)0.0197 (9)0.0027 (8)0.0009 (7)0.0020 (8)
C90.0202 (10)0.0237 (12)0.0229 (9)0.0017 (9)0.0011 (7)0.0015 (10)
C100.0289 (11)0.0275 (13)0.0211 (9)0.0049 (10)0.0064 (8)0.0034 (9)
C110.0310 (11)0.0237 (12)0.0178 (9)0.0066 (9)−0.0020 (7)−0.0001 (9)
C120.0239 (10)0.0248 (12)0.0255 (10)0.0016 (10)−0.0042 (7)−0.0020 (10)
C130.0199 (10)0.0243 (13)0.0219 (9)0.0000 (9)0.0030 (7)0.0003 (10)

Geometric parameters (Å, °)

O1—C51.380 (2)C6—C81.471 (2)
O1—C61.391 (2)C7—H70.9500
O2—C51.207 (2)C8—C91.397 (2)
N1—C11.363 (2)C8—C131.397 (3)
N1—C41.384 (2)C9—C101.389 (3)
N1—C71.391 (2)C9—H90.9500
C1—C21.377 (3)C10—C111.380 (3)
C1—H10.9500C10—H100.9500
C2—C31.400 (3)C11—C121.389 (3)
C2—H20.9500C11—H110.9500
C3—C41.380 (3)C12—C131.383 (3)
C3—H30.9500C12—H120.9500
C4—C51.438 (2)C13—H130.9500
C6—C71.333 (2)
C5—O1—C6121.88 (14)C6—C7—N1119.21 (18)
C1—N1—C4108.95 (15)C6—C7—H7120.4
C1—N1—C7129.57 (17)N1—C7—H7120.4
C4—N1—C7121.48 (15)C9—C8—C13118.58 (17)
N1—C1—C2107.74 (17)C9—C8—C6120.77 (17)
N1—C1—H1126.1C13—C8—C6120.65 (16)
C2—C1—H1126.1C10—C9—C8120.26 (19)
C1—C2—C3108.45 (17)C10—C9—H9119.9
C1—C2—H2125.8C8—C9—H9119.9
C3—C2—H2125.8C11—C10—C9120.78 (17)
C4—C3—C2106.83 (18)C11—C10—H10119.6
C4—C3—H3126.6C9—C10—H10119.6
C2—C3—H3126.6C10—C11—C12119.29 (18)
C3—C4—N1108.03 (16)C10—C11—H11120.4
C3—C4—C5132.71 (19)C12—C11—H11120.4
N1—C4—C5119.21 (16)C13—C12—C11120.47 (19)
O2—C5—O1117.52 (16)C13—C12—H12119.8
O2—C5—C4125.73 (18)C11—C12—H12119.8
O1—C5—C4116.75 (16)C12—C13—C8120.62 (17)
C7—C6—O1121.35 (17)C12—C13—H13119.7
C7—C6—C8125.48 (18)C8—C13—H13119.7
O1—C6—C8113.17 (15)
C4—N1—C1—C2−0.7 (2)C5—O1—C6—C8179.70 (17)
C7—N1—C1—C2178.7 (2)O1—C6—C7—N1−1.1 (3)
N1—C1—C2—C30.9 (2)C8—C6—C7—N1179.16 (18)
C1—C2—C3—C4−0.7 (2)C1—N1—C7—C6−179.8 (2)
C2—C3—C4—N10.3 (2)C4—N1—C7—C6−0.5 (3)
C2—C3—C4—C5177.6 (2)C7—C6—C8—C9−175.2 (2)
C1—N1—C4—C30.2 (2)O1—C6—C8—C95.0 (3)
C7—N1—C4—C3−179.20 (19)C7—C6—C8—C134.5 (3)
C1—N1—C4—C5−177.49 (18)O1—C6—C8—C13−175.29 (19)
C7—N1—C4—C53.1 (3)C13—C8—C9—C100.5 (3)
C6—O1—C5—O2−177.16 (18)C6—C8—C9—C10−179.8 (2)
C6—O1—C5—C42.6 (3)C8—C9—C10—C110.0 (3)
C3—C4—C5—O2−1.3 (4)C9—C10—C11—C12−0.1 (4)
N1—C4—C5—O2175.7 (2)C10—C11—C12—C13−0.2 (4)
C3—C4—C5—O1178.9 (2)C11—C12—C13—C80.7 (4)
N1—C4—C5—O1−4.0 (3)C9—C8—C13—C12−0.8 (3)
C5—O1—C6—C7−0.1 (3)C6—C8—C13—C12179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.273.109 (2)147

Symmetry codes: (i) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2449).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bélanger, P. C., Atkinson, J. G., Rooney, C. S., Britcher, S. F. & Remy, D. C. (1983). J. Org. Chem 48, 3234–3241.
  • Fu, D.-C., Yu, H. & Zhang, S.-F. (2002). Chin. Chem. Lett 13, 1051–1054.
  • Khan, S. T., Yu, P., Hua, E., Ali, S. N. & Nisa, M. (2010). Acta Cryst. E66, o711. [PMC free article] [PubMed]
  • Micheli, F., Bertani, B., Bozzoli, A., Crippa, L., Cavanni, P., Di Fabio, R., Donati, D., Marzorati, P., Merlo, G., Paio, A., Perugini, L. & Zarantonello, P. (2008). Bioorg. Med. Chem. Lett 18, 1804–1809. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography