PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1261.
Published online 2010 May 8. doi:  10.1107/S160053681001576X
PMCID: PMC2979494

2,4-Dichloro­quinoline

Abstract

The asymmetric unit of the title compound, C9H5Cl2N, consists of two crystallographically independent mol­ecules. In both mol­ecules the quinoline ring system is essentially planar [maximum deviations from the best plane of 0.0232 (13) 0.0089 (15) Å]. The angle between these planes is 22.40 (3)°. Conformers A and B are arranged face-to-face along the c axis, forming alternating pairs in the order AABB. The inter­planar distances AA, AB and BB are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. The crystal packing is stabilized by weak C—H(...)Cl and C—H(...)N inter­actions.

Related literature

For previous syntheses of title compound, see: Baeyer & Bloem (1882 [triangle]); Steinschifter & Stadlbauer (1994 [triangle]). For the use of the title compound in organic synthesis, see: Buchmann & Hamilton (1942 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1261-scheme1.jpg

Experimental

Crystal data

  • C9H5Cl2N
  • M r = 198.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1261-efi1.jpg
  • a = 10.3689 (3) Å
  • b = 11.9215 (3) Å
  • c = 13.6380 (5) Å
  • β = 98.937 (3)°
  • V = 1665.37 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 120 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Kuma KM-4-CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.60, T max = 0.81
  • 13224 measured reflections
  • 2927 independent reflections
  • 2504 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.066
  • S = 1.08
  • 2927 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001576X/bg2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001576X/bg2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101, and the Tomas Bata Foundation is gratefully acknowledged.

supplementary crystallographic information

Comment

Although the 2,4-dichloroquinoline is well known for more than hundred years (Baeyer & Bloem, 1882) and has been widely used in quinoline chemistry (Buchmann & Hamilton, 1942; Steinschifter & Stadlbauer, 1994), no structure data has been published so far.

The title compound (Fig. 1) crystallises with two crystallographical independent molecules in asymmetric unit. Conformers A and B differ very little in geometrical parameters. Both of them consist of essentially planar quinoline ring with maximum deviations from the best planes being 0.0232 (13) Å for atom C2 (conformer A) and 0.0089 (15) Å for atom C17 (conformer B). The angle between these quinoline best planes is 22.40 (3)°. Chlorine atoms lay almost in the ring best planes with the deviations 0.0035 (4) Å for atom Cl1 and -0.0011 (4) for atom Cl2 (conformer A) and -0.0081 (4) Å for atom Cl3 and 0.0121 (4) Å for atom Cl4 (conformer B). Pairs of conformers are stacked along the c axes in AABB arrangement stabilised via offset π–π interactions. The distances between AA, AB and BB planes calculated as a distance of nitrogen atom from adjacent ring plane are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. Molecular packing is stabilised by C—H···Cl and C—H···N weak interactions (Fig. 2, Table 1).

Experimental

4-Hydroxyquinolin-2-one (322 mg, 2 mmol) and POCl3 (2 ml) were treated for 15 min. at 100°C. Reaction mixture was poured onto finely crushed ice to decompose an excess of POCl3. Basicity was adjusted to pH =8 using Na2CO3 and resulting precipitate was filtered off. The solid on the filter was washed with water and dried at room temperature to yield 292 mg (74%) of title compound.The single crystal used for data collection was obtained by crystallisation from diethyl ether at room temperature.

Figures

Fig. 1.
Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids.
Fig. 2.
Eight molecules lying around an inversion centre and viewed along the c axis are coloured by symmetry equivalence. The H-bond cross-linkage framework is drawn in the front layer by dotted lines.Hydrogen atoms are omitted except for those participating ...

Crystal data

C9H5Cl2NF(000) = 800
Mr = 198.04Dx = 1.580 Mg m3
Monoclinic, P21/nMelting point: 335(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3689 (3) ÅCell parameters from 14773 reflections
b = 11.9215 (3) Åθ = 2.9–27.1°
c = 13.6380 (5) ŵ = 0.71 mm1
β = 98.937 (3)°T = 120 K
V = 1665.37 (9) Å3Block, yellow
Z = 80.40 × 0.40 × 0.30 mm

Data collection

Kuma KM-4-CCD diffractometer2927 independent reflections
Radiation source: fine-focus sealed tube2504 reflections with I > 2σ(I)
graphiteRint = 0.012
ω scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)h = −12→12
Tmin = 0.60, Tmax = 0.81k = −14→14
13224 measured reflectionsl = −16→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.041P)2 + 0.2572P] where P = (Fo2 + 2Fc2)/3
2927 reflections(Δ/σ)max = 0.005
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.13384 (3)0.03305 (3)0.08803 (3)0.02540 (11)
Cl20.52857 (3)0.32412 (3)0.17438 (3)0.02529 (11)
Cl3−0.36457 (3)0.59016 (3)0.06753 (3)0.02745 (11)
Cl40.02870 (3)0.30160 (3)0.16841 (3)0.02323 (11)
C10.30194 (13)0.05798 (11)0.10998 (10)0.0179 (3)
C20.34206 (13)0.16982 (11)0.12943 (10)0.0184 (3)
H2A0.28080.22900.12970.022*
C30.47285 (13)0.18864 (11)0.14782 (10)0.0170 (3)
C40.56380 (13)0.09974 (11)0.14534 (9)0.0174 (3)
C50.70140 (13)0.11242 (12)0.16231 (10)0.0218 (3)
H5A0.73890.18420.17790.026*
C60.78035 (14)0.02124 (13)0.15621 (11)0.0262 (3)
H6A0.87250.03030.16770.031*
C70.72627 (14)−0.08561 (13)0.13307 (10)0.0252 (3)
H7A0.7821−0.14790.12850.030*
C80.59391 (14)−0.10019 (12)0.11718 (10)0.0217 (3)
H8A0.5585−0.17280.10210.026*
C90.50939 (13)−0.00843 (11)0.12290 (9)0.0171 (3)
N10.37727 (11)−0.02819 (9)0.10649 (8)0.0178 (3)
C11−0.19672 (13)0.56562 (11)0.09168 (10)0.0185 (3)
C12−0.15678 (13)0.45494 (11)0.11711 (10)0.0179 (3)
H12A−0.21820.39640.12040.022*
C13−0.02595 (13)0.43615 (11)0.13660 (9)0.0165 (3)
C140.06551 (13)0.52382 (11)0.13046 (9)0.0175 (3)
C150.20256 (13)0.51151 (12)0.14938 (10)0.0217 (3)
H15A0.24000.44060.16840.026*
C160.28175 (14)0.60210 (13)0.14029 (11)0.0274 (3)
H16A0.37390.59310.15300.033*
C170.22853 (15)0.70773 (13)0.11250 (11)0.0281 (4)
H17A0.28470.76940.10630.034*
C180.09590 (15)0.72227 (12)0.09421 (10)0.0248 (3)
H18A0.06070.79410.07560.030*
C190.01108 (13)0.63129 (11)0.10277 (10)0.0183 (3)
N2−0.12097 (11)0.65102 (9)0.08387 (8)0.0200 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01550 (19)0.0246 (2)0.0355 (2)−0.00423 (13)0.00217 (15)−0.00300 (15)
Cl20.0226 (2)0.01604 (18)0.0354 (2)−0.00448 (13)−0.00113 (16)−0.00104 (14)
Cl30.0184 (2)0.0270 (2)0.0358 (2)0.00475 (14)0.00067 (15)0.00256 (16)
Cl40.0236 (2)0.01571 (18)0.0307 (2)0.00392 (13)0.00519 (15)0.00299 (13)
C10.0150 (7)0.0223 (7)0.0163 (7)−0.0019 (5)0.0016 (6)0.0001 (5)
C20.0180 (7)0.0169 (7)0.0202 (7)0.0016 (5)0.0027 (6)0.0009 (5)
C30.0210 (7)0.0151 (7)0.0145 (7)−0.0023 (5)0.0011 (6)0.0006 (5)
C40.0188 (7)0.0208 (7)0.0122 (7)0.0017 (5)0.0016 (5)0.0024 (5)
C50.0175 (7)0.0274 (8)0.0203 (7)−0.0019 (6)0.0021 (6)0.0027 (6)
C60.0165 (7)0.0394 (9)0.0225 (8)0.0053 (6)0.0020 (6)0.0050 (7)
C70.0258 (8)0.0320 (8)0.0179 (8)0.0129 (6)0.0038 (6)0.0032 (6)
C80.0294 (8)0.0197 (7)0.0162 (7)0.0053 (6)0.0043 (6)0.0007 (6)
C90.0201 (7)0.0202 (7)0.0108 (7)0.0016 (6)0.0019 (5)0.0022 (5)
N10.0198 (6)0.0172 (6)0.0161 (6)−0.0011 (5)0.0018 (5)0.0001 (5)
C110.0183 (7)0.0204 (7)0.0167 (7)0.0016 (5)0.0023 (6)−0.0016 (5)
C120.0195 (7)0.0175 (7)0.0174 (7)−0.0023 (5)0.0047 (6)−0.0007 (5)
C130.0212 (7)0.0149 (7)0.0134 (7)0.0020 (5)0.0033 (6)−0.0004 (5)
C140.0205 (7)0.0195 (7)0.0131 (7)−0.0012 (6)0.0041 (6)−0.0033 (5)
C150.0192 (7)0.0259 (8)0.0201 (7)0.0003 (6)0.0037 (6)−0.0035 (6)
C160.0198 (8)0.0365 (9)0.0263 (8)−0.0075 (6)0.0048 (6)−0.0073 (7)
C170.0292 (9)0.0296 (8)0.0261 (8)−0.0146 (7)0.0060 (7)−0.0049 (7)
C180.0336 (9)0.0177 (7)0.0234 (8)−0.0061 (6)0.0060 (6)−0.0029 (6)
C190.0228 (7)0.0186 (7)0.0138 (7)−0.0017 (6)0.0039 (6)−0.0035 (5)
N20.0239 (7)0.0165 (6)0.0198 (6)0.0008 (5)0.0040 (5)−0.0006 (5)

Geometric parameters (Å, °)

Cl1—C11.7475 (13)C8—H8A0.9500
Cl2—C31.7345 (13)C9—N11.3738 (17)
Cl3—C111.7450 (14)C11—N21.3003 (18)
Cl4—C131.7338 (13)C11—C121.4100 (18)
C1—N11.2959 (17)C12—C131.3598 (19)
C1—C21.4096 (18)C12—H12A0.9500
C2—C31.3589 (19)C13—C141.4225 (19)
C2—H2A0.9500C14—C151.4120 (19)
C3—C41.4225 (18)C14—C191.4270 (19)
C4—C51.4175 (19)C15—C161.374 (2)
C4—C91.4217 (19)C15—H15A0.9500
C5—C61.371 (2)C16—C171.403 (2)
C5—H5A0.9500C16—H16A0.9500
C6—C71.408 (2)C17—C181.370 (2)
C6—H6A0.9500C17—H17A0.9500
C7—C81.367 (2)C18—C191.4126 (19)
C7—H7A0.9500C18—H18A0.9500
C8—C91.4114 (19)C19—N21.3736 (18)
N1—C1—C2126.50 (12)N2—C11—C12126.50 (13)
N1—C1—Cl1116.73 (10)N2—C11—Cl3116.78 (10)
C2—C1—Cl1116.77 (10)C12—C11—Cl3116.72 (10)
C3—C2—C1116.60 (12)C13—C12—C11116.62 (12)
C3—C2—H2A121.7C13—C12—H12A121.7
C1—C2—H2A121.7C11—C12—H12A121.7
C2—C3—C4121.26 (12)C12—C13—C14121.43 (12)
C2—C3—Cl2118.87 (10)C12—C13—Cl4118.60 (10)
C4—C3—Cl2119.88 (10)C14—C13—Cl4119.97 (10)
C5—C4—C3124.81 (12)C15—C14—C13125.04 (13)
C5—C4—C9119.18 (12)C15—C14—C19119.15 (12)
C3—C4—C9116.01 (12)C13—C14—C19115.81 (12)
C6—C5—C4120.06 (13)C16—C15—C14120.03 (14)
C6—C5—H5A120.0C16—C15—H15A120.0
C4—C5—H5A120.0C14—C15—H15A120.0
C5—C6—C7120.67 (13)C15—C16—C17120.95 (14)
C5—C6—H6A119.7C15—C16—H16A119.5
C7—C6—H6A119.7C17—C16—H16A119.5
C8—C7—C6120.38 (13)C18—C17—C16120.28 (13)
C8—C7—H7A119.8C18—C17—H17A119.9
C6—C7—H7A119.8C16—C17—H17A119.9
C7—C8—C9120.63 (13)C17—C18—C19120.54 (14)
C7—C8—H8A119.7C17—C18—H18A119.7
C9—C8—H8A119.7C19—C18—H18A119.7
N1—C9—C8118.04 (12)N2—C19—C18117.92 (12)
N1—C9—C4122.89 (12)N2—C19—C14123.03 (12)
C8—C9—C4119.07 (12)C18—C19—C14119.04 (12)
C1—N1—C9116.71 (11)C11—N2—C19116.59 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl40.952.883.7197 (14)148
C17—H17A···N1i0.952.603.5111 (19)162
C18—H18A···Cl1i0.952.953.7290 (15)141

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2343).

References

  • Baeyer, A. & Bloem, F. (1882). Ber. Dtsch. Chem. Ges.15, 2147–2155.
  • Buchmann, F. J. & Hamilton, C. S. (1942). J. Am. Chem. Soc.64, 1357–1360.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steinschifter, W. & Stadlbauer, W. (1994). J. Prakt. Chem.336, 311–318.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography