PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1363.
Published online 2010 May 15. doi:  10.1107/S1600536810017344
PMCID: PMC2979493

N,N′-Diphenyl­suberamide

Abstract

In the title compound (systematic name: N,N′-diphenyl­octanediamide), C20H24N2O2, the two phenyl rings make an inter­planar angle of 76.5 (2)°. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds, which link the mol­ecules into chains running along the b axis. The crystal studied was non-merohedrally twinned, the fractional contribution of the minor twin component being 0.203 (2).

Related literature

For related structures, see: Gowda et al. (2007 [triangle], 2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1363-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O2
  • M r = 324.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1363-efi1.jpg
  • a = 18.2267 (9) Å
  • b = 5.03097 (15) Å
  • c = 38.1436 (15) Å
  • β = 96.517 (4)°
  • V = 3475.1 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.58 × 0.33 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.957, T max = 0.996
  • 27788 measured reflections
  • 3027 independent reflections
  • 2524 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.203
  • S = 1.09
  • 3027 reflections
  • 224 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017344/bt5267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017344/bt5267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, for the award of a research fellowship.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2007; 2009a,b), the crystal structure of N,N-bis(phenyl)-suberamide has been determined (I) (Fig. 1).

In the structure, the two phenyl rings make an interplanar angle of 76.5 (2)°. The plane of the aliphatic group C2/C7 makes dihedral angles of 26.3 (5)° with the amide group (N1, H1N, C1, O1) and 27.2 (5)° with the amide group (N2, H2N, C8, O2). The conformations of the amide groups with respect to the attached phenyl rings are given by the torsion angles of C14—C9—N1—C1 = -38.0 (6)° and C16—C15—N2—C8 = -42.2 (6)°. The structure is stabilized by two intramolecular hydrogen bonds (Table 1). The intermolecular N–H···O hydrogen bonds link the molecules into the chains running along the b-axis of the crystal (Fig. 2). The crystal is merohedrally twinned with the twin fraction of 0.203 (2).

Experimental

Suberic acid (0.3 mol) was heated with thionyl chloride (1.2 mol) at 120°C for 4 hours. The acid chloride obtained was treated with aniline (0.6 mol). The product obtained was added to crushed ice to obtain the white precipitate. It was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallised to constant point (186-188°C) from ethanol-Tetrahydrofuran mixture in the ratio 1:4.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its solution at room temperature.

Refinement

The crystal used for data collection was a non-merohedral twin. The twin law was found to be a twofold axis about the [1 0 4] direct lattice direction. The final refinement was made using the HKLF4 format of the HKL file, and using the INS file having the twin matrix (-1 0 0 / 0 -1 0 / 0.5 0 1) in the TWIN instruction. The fractional contribution of the minor twin component refined to 0.203 (2). The C-bounded hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.97 Å. Amide H atoms were refined with N–H distance restrained to 0.85 (3) Å. The Uiso(H) values were set at 1.2Ueq(C, N).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of crystal structure of (I) viewed down the a-axis. Intermolecular N–H···O hydrogen bonds (shown as dashed lines) connect the molecules into chains running along the b-axis of the crystal. Symmetry codes (i): x, y-1, ...

Crystal data

C20H24N2O2F(000) = 1392
Mr = 324.41Dx = 1.24 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7864 reflections
a = 18.2267 (9) Åθ = 1.9–27.4°
b = 5.03097 (15) ŵ = 0.08 mm1
c = 38.1436 (15) ÅT = 295 K
β = 96.517 (4)°Plate, colourless
V = 3475.1 (2) Å30.58 × 0.33 × 0.05 mm
Z = 8

Data collection

Oxford Diffraction Gemini R CCD diffractometer3027 independent reflections
graphite2524 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.064
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −21→21
Tmin = 0.957, Tmax = 0.996k = −5→5
27788 measured reflectionsl = −45→45

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0865P)2 + 8.373P] where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0479 (2)0.3940 (7)0.55627 (10)0.0357 (9)
C20.0772 (2)0.2805 (8)0.52403 (10)0.0392 (9)
H2A0.03580.23780.50670.047*
H2B0.10290.11580.53060.047*
C30.1291 (2)0.4621 (8)0.50714 (10)0.0398 (9)
H3A0.17320.4890.52350.048*
H3B0.10550.63370.50280.048*
C40.1511 (2)0.3560 (8)0.47276 (10)0.0398 (9)
H4A0.10680.32570.45670.048*
H4B0.17540.18570.47720.048*
C50.2020 (2)0.5373 (8)0.45507 (9)0.0415 (10)
H5A0.2470.56270.47090.05*
H5B0.17840.70950.45140.05*
C60.2222 (2)0.4363 (8)0.42003 (10)0.0417 (10)
H6A0.24570.26380.42350.05*
H6B0.17750.41330.4040.05*
C70.2735 (2)0.6215 (8)0.40346 (10)0.0416 (10)
H7A0.31860.64180.41940.05*
H7B0.25050.7950.40040.05*
C80.2930 (2)0.5254 (7)0.36811 (10)0.0388 (9)
C9−0.0140 (2)0.2611 (7)0.60821 (9)0.0343 (8)
C10−0.0691 (2)0.0877 (9)0.61530 (10)0.0459 (10)
H10−0.0822−0.05220.59990.055*
C11−0.1051 (3)0.1199 (10)0.64514 (11)0.0565 (12)
H11−0.14250.00340.64970.068*
C12−0.0851 (3)0.3247 (10)0.66783 (11)0.0595 (13)
H12−0.1090.34820.68790.071*
C13−0.0299 (3)0.4945 (9)0.66109 (10)0.0574 (12)
H13−0.01680.6330.67670.069*
C140.0070 (2)0.4649 (8)0.63144 (10)0.0439 (10)
H140.04510.57980.62730.053*
C150.3338 (2)0.6863 (7)0.31213 (10)0.0382 (9)
C160.3837 (2)0.4959 (9)0.30577 (11)0.0517 (11)
H160.4010.37720.32350.062*
C170.4088 (3)0.4791 (11)0.27288 (13)0.0676 (14)
H170.44250.34790.26850.081*
C180.3837 (3)0.6570 (11)0.24667 (12)0.0695 (15)
H180.40110.64760.22470.083*
C190.3336 (3)0.8462 (11)0.25299 (13)0.0738 (16)
H190.31570.96330.23520.089*
C200.3091 (3)0.8644 (9)0.28602 (12)0.0565 (12)
H200.27590.99710.29050.068*
N10.02190 (19)0.2112 (6)0.57763 (8)0.0381 (8)
H1N0.029 (2)0.055 (6)0.5713 (11)0.046*
N20.3100 (2)0.7191 (6)0.34624 (9)0.0405 (8)
H2N0.302 (2)0.868 (6)0.3547 (11)0.049*
O10.04456 (18)0.6348 (5)0.56139 (8)0.0503 (8)
O20.2948 (2)0.2890 (6)0.36057 (9)0.0652 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.041 (2)0.029 (2)0.038 (2)0.0025 (17)0.0096 (17)−0.0019 (17)
C20.050 (2)0.032 (2)0.038 (2)−0.0012 (18)0.0144 (18)−0.0054 (17)
C30.046 (2)0.037 (2)0.038 (2)−0.0056 (18)0.0141 (17)−0.0075 (17)
C40.044 (2)0.038 (2)0.039 (2)−0.0018 (18)0.0125 (17)−0.0048 (17)
C50.052 (2)0.038 (2)0.037 (2)−0.0057 (19)0.0163 (18)−0.0080 (18)
C60.055 (2)0.031 (2)0.042 (2)−0.0081 (18)0.0166 (19)−0.0062 (17)
C70.051 (2)0.033 (2)0.042 (2)−0.0046 (19)0.0131 (19)−0.0038 (18)
C80.050 (2)0.026 (2)0.044 (2)−0.0011 (18)0.0215 (19)−0.0072 (17)
C90.039 (2)0.0295 (19)0.0347 (19)0.0036 (17)0.0069 (16)0.0021 (15)
C100.057 (3)0.043 (2)0.039 (2)−0.007 (2)0.0131 (19)−0.0037 (18)
C110.060 (3)0.058 (3)0.056 (3)0.002 (2)0.029 (2)0.011 (2)
C120.079 (3)0.062 (3)0.042 (2)0.013 (3)0.030 (2)0.005 (2)
C130.089 (3)0.047 (3)0.037 (2)0.005 (3)0.011 (2)−0.009 (2)
C140.051 (2)0.040 (2)0.041 (2)−0.0034 (19)0.0109 (19)−0.0051 (19)
C150.046 (2)0.030 (2)0.041 (2)−0.0092 (17)0.0134 (18)−0.0034 (17)
C160.060 (3)0.049 (2)0.050 (2)0.008 (2)0.021 (2)0.002 (2)
C170.081 (3)0.060 (3)0.070 (3)0.005 (3)0.042 (3)−0.009 (3)
C180.102 (4)0.066 (3)0.046 (3)−0.018 (3)0.035 (3)−0.009 (3)
C190.113 (5)0.063 (3)0.047 (3)−0.005 (3)0.019 (3)0.013 (3)
C200.072 (3)0.042 (3)0.058 (3)0.002 (2)0.017 (2)0.004 (2)
N10.0527 (19)0.0262 (16)0.0384 (17)−0.0009 (15)0.0174 (15)−0.0018 (14)
N20.054 (2)0.0263 (17)0.0446 (19)−0.0037 (15)0.0198 (16)−0.0016 (15)
O10.072 (2)0.0293 (15)0.0548 (18)0.0002 (14)0.0316 (16)−0.0006 (13)
O20.110 (3)0.0280 (16)0.067 (2)−0.0056 (17)0.051 (2)−0.0043 (14)

Geometric parameters (Å, °)

C1—O11.229 (5)C9—N11.423 (5)
C1—N11.350 (5)C10—C111.386 (6)
C1—C21.508 (5)C10—H100.93
C2—C31.510 (5)C11—C121.368 (7)
C2—H2A0.97C11—H110.93
C2—H2B0.97C12—C131.366 (7)
C3—C41.512 (5)C12—H120.93
C3—H3A0.97C13—C141.388 (6)
C3—H3B0.97C13—H130.93
C4—C51.513 (5)C14—H140.93
C4—H4A0.97C15—C161.362 (6)
C4—H4B0.97C15—C201.377 (6)
C5—C61.514 (5)C15—N21.427 (5)
C5—H5A0.97C16—C171.385 (6)
C5—H5B0.97C16—H160.93
C6—C71.509 (5)C17—C181.381 (7)
C6—H6A0.97C17—H170.93
C6—H6B0.97C18—C191.360 (8)
C7—C81.512 (5)C18—H180.93
C7—H7A0.97C19—C201.387 (7)
C7—H7B0.97C19—H190.93
C8—O21.225 (5)C20—H200.93
C8—N21.342 (5)N1—H1N0.84 (3)
C9—C101.380 (6)N2—H2N0.84 (3)
C9—C141.381 (5)
O1—C1—N1123.3 (3)C10—C9—C14119.9 (3)
O1—C1—C2122.1 (3)C10—C9—N1117.5 (3)
N1—C1—C2114.5 (3)C14—C9—N1122.5 (3)
C1—C2—C3114.6 (3)C9—C10—C11120.7 (4)
C1—C2—H2A108.6C9—C10—H10119.7
C3—C2—H2A108.6C11—C10—H10119.7
C1—C2—H2B108.6C12—C11—C10119.3 (4)
C3—C2—H2B108.6C12—C11—H11120.3
H2A—C2—H2B107.6C10—C11—H11120.3
C2—C3—C4113.4 (3)C13—C12—C11120.1 (4)
C2—C3—H3A108.9C13—C12—H12119.9
C4—C3—H3A108.9C11—C12—H12119.9
C2—C3—H3B108.9C12—C13—C14121.4 (4)
C4—C3—H3B108.9C12—C13—H13119.3
H3A—C3—H3B107.7C14—C13—H13119.3
C3—C4—C5114.2 (3)C9—C14—C13118.5 (4)
C3—C4—H4A108.7C9—C14—H14120.7
C5—C4—H4A108.7C13—C14—H14120.7
C3—C4—H4B108.7C16—C15—C20120.0 (4)
C5—C4—H4B108.7C16—C15—N2121.5 (4)
H4A—C4—H4B107.6C20—C15—N2118.4 (4)
C4—C5—C6114.5 (3)C15—C16—C17120.0 (4)
C4—C5—H5A108.6C15—C16—H16120
C6—C5—H5A108.6C17—C16—H16120
C4—C5—H5B108.6C18—C17—C16120.0 (5)
C6—C5—H5B108.6C18—C17—H17120
H5A—C5—H5B107.6C16—C17—H17120
C7—C6—C5112.8 (3)C19—C18—C17119.9 (4)
C7—C6—H6A109C19—C18—H18120
C5—C6—H6A109C17—C18—H18120
C7—C6—H6B109C18—C19—C20120.0 (5)
C5—C6—H6B109C18—C19—H19120
H6A—C6—H6B107.8C20—C19—H19120
C6—C7—C8113.3 (3)C15—C20—C19120.1 (5)
C6—C7—H7A108.9C15—C20—H20119.9
C8—C7—H7A108.9C19—C20—H20119.9
C6—C7—H7B108.9C1—N1—C9126.9 (3)
C8—C7—H7B108.9C1—N1—H1N113 (3)
H7A—C7—H7B107.7C9—N1—H1N120 (3)
O2—C8—N2123.0 (4)C8—N2—C15126.8 (3)
O2—C8—C7122.3 (4)C8—N2—H2N110 (3)
N2—C8—C7114.6 (3)C15—N2—H2N123 (3)
O1—C1—C2—C323.9 (6)C20—C15—C16—C17−0.9 (7)
N1—C1—C2—C3−159.8 (3)N2—C15—C16—C17−176.4 (4)
C1—C2—C3—C4−173.8 (3)C15—C16—C17—C180.7 (8)
C2—C3—C4—C5179.0 (4)C16—C17—C18—C19−1.0 (8)
C3—C4—C5—C6−178.1 (4)C17—C18—C19—C201.7 (8)
C4—C5—C6—C7−179.4 (4)C16—C15—C20—C191.5 (7)
C5—C6—C7—C8−178.9 (4)N2—C15—C20—C19177.1 (4)
C6—C7—C8—O2−29.1 (6)C18—C19—C20—C15−1.9 (8)
C6—C7—C8—N2152.7 (4)O1—C1—N1—C91.5 (7)
C14—C9—C10—C111.7 (6)C2—C1—N1—C9−174.8 (4)
N1—C9—C10—C11178.2 (4)C10—C9—N1—C1145.5 (4)
C9—C10—C11—C12−0.6 (7)C14—C9—N1—C1−38.0 (6)
C10—C11—C12—C13−0.2 (7)O2—C8—N2—C15−1.4 (7)
C11—C12—C13—C140.0 (7)C7—C8—N2—C15176.8 (4)
C10—C9—C14—C13−2.0 (6)C16—C15—N2—C8−42.2 (6)
N1—C9—C14—C13−178.3 (4)C20—C15—N2—C8142.3 (4)
C12—C13—C14—C91.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.17 (3)3.004 (4)173 (4)
N2—H2N···O2ii0.84 (3)2.13 (3)2.937 (4)161 (4)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5267).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o3064. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography