PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1300.
Published online 2010 May 8. doi:  10.1107/S1600536810016156
PMCID: PMC2979490

Cyclo­hexa­none 2-nitro­phenyl­hydrazone

Abstract

In the title Schiff base compound, C12H15N3O2, obtained from a condensation reaction of cyclo­hexa­none and 2-nitro­phenyl­hydrazine, the phenyl­hydrazone group is planar, the largest deviation from the mean plane being 0.0252 (12) Å, and the nitro fragment is twisted slightly with respect to the mean plane, making a dihedral angle of 6.96 (17)°. The cyclo­heaxanone ring displays a chair conformation. An intra­molecular N—H(...)O hydrogen bond helps to stabilize the mol­ecular structure.

Related literature

For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]). For puckering parameters, see Cremer & Pople (1975 [triangle]). For a related structure, see: Shan et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1300-scheme1.jpg

Experimental

Crystal data

  • C12H15N3O2
  • M r = 233.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1300-efi1.jpg
  • a = 8.519 (5) Å
  • b = 19.609 (7) Å
  • c = 7.822 (4) Å
  • β = 112.110 (7)°
  • V = 1210.6 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.973, T max = 0.977
  • 4958 measured reflections
  • 2472 independent reflections
  • 739 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.066
  • S = 0.64
  • 2472 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.09 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016156/dn2561sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016156/dn2561Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.

In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and [var phi]=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).

Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.

Experimental

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, cyclohexanone (1 mmol, 0.098 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H=0.93Å (aromatic), 0.97Å(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(C,N).

Figures

Fig. 1.
Molecular view of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Intramolecular hydrogen bond is shown as dashed lines.

Crystal data

C12H15N3O2F(000) = 496
Mr = 233.27Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 666 reflections
a = 8.519 (5) Åθ = 3.0–26.3°
b = 19.609 (7) ŵ = 0.09 mm1
c = 7.822 (4) ÅT = 293 K
β = 112.110 (7)°Block, red
V = 1210.6 (10) Å30.23 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2472 independent reflections
Radiation source: fine-focus sealed tube739 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→8
Tmin = 0.973, Tmax = 0.977k = −24→23
4958 measured reflectionsl = −8→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.64w = 1/[σ2(Fo2) + (0.0244P)2] where P = (Fo2 + 2Fc2)/3
2472 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = −0.11 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0513 (2)0.70011 (9)0.6282 (2)0.1024 (6)
O20.0322 (2)0.60900 (8)0.7886 (2)0.0979 (6)
N10.0275 (3)0.64621 (11)0.6599 (3)0.0736 (6)
N20.19470 (18)0.51469 (9)0.6890 (2)0.0621 (5)
H20.14840.52390.76690.075*
N30.2696 (2)0.45142 (10)0.6925 (2)0.0614 (5)
C10.1174 (3)0.62570 (13)0.5443 (3)0.0567 (6)
C20.1241 (3)0.67296 (11)0.4156 (3)0.0716 (6)
H2B0.07290.71530.40790.086*
C30.2056 (3)0.65756 (14)0.2998 (3)0.0802 (7)
H3B0.21010.68900.21280.096*
C40.2813 (3)0.59436 (15)0.3146 (3)0.0795 (7)
H4A0.33730.58360.23650.095*
C50.2757 (2)0.54760 (11)0.4404 (3)0.0664 (6)
H5A0.32680.50530.44540.080*
C60.1950 (2)0.56162 (12)0.5625 (3)0.0540 (5)
C70.2737 (2)0.41110 (11)0.8199 (3)0.0577 (6)
C80.2140 (3)0.42256 (10)0.9746 (3)0.0716 (6)
H8A0.11450.39490.95540.086*
H8B0.18260.47000.97620.086*
C90.3519 (3)0.40421 (11)1.1584 (3)0.0783 (7)
H9A0.44360.43701.18660.094*
H9B0.30640.40711.25470.094*
C100.4207 (3)0.33364 (11)1.1574 (3)0.0890 (7)
H10A0.33170.30041.14020.107*
H10B0.51110.32471.27550.107*
C110.4880 (3)0.32612 (11)1.0044 (3)0.0859 (7)
H11A0.52760.27981.00320.103*
H11B0.58320.35671.02700.103*
C120.3504 (3)0.34250 (10)0.8190 (3)0.0722 (6)
H12A0.39810.34150.72430.087*
H12B0.26260.30800.78910.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1178 (15)0.0768 (11)0.1168 (14)0.0302 (11)0.0489 (12)−0.0068 (10)
O20.1121 (15)0.1044 (14)0.1003 (13)0.0261 (10)0.0662 (12)0.0126 (11)
N10.0680 (15)0.0692 (16)0.0808 (15)0.0008 (12)0.0246 (14)−0.0132 (13)
N20.0626 (14)0.0648 (12)0.0657 (12)0.0003 (10)0.0319 (11)0.0026 (10)
N30.0617 (12)0.0553 (12)0.0665 (12)0.0020 (10)0.0234 (10)−0.0003 (10)
C10.0491 (16)0.0625 (16)0.0589 (14)−0.0032 (13)0.0207 (13)−0.0044 (14)
C20.0627 (17)0.0662 (16)0.0706 (16)−0.0056 (13)0.0077 (14)−0.0003 (15)
C30.0862 (19)0.081 (2)0.0700 (17)−0.0111 (16)0.0258 (15)0.0096 (15)
C40.0774 (19)0.096 (2)0.0720 (17)−0.0038 (16)0.0365 (15)0.0006 (16)
C50.0650 (17)0.0712 (17)0.0686 (15)0.0002 (12)0.0314 (14)−0.0004 (14)
C60.0413 (14)0.0648 (17)0.0554 (14)−0.0098 (13)0.0175 (12)−0.0061 (13)
C70.0491 (14)0.0576 (15)0.0613 (14)−0.0049 (12)0.0150 (12)−0.0030 (13)
C80.0701 (17)0.0780 (16)0.0674 (15)−0.0056 (12)0.0266 (15)0.0073 (13)
C90.0760 (18)0.0897 (17)0.0644 (16)−0.0126 (14)0.0210 (15)0.0007 (14)
C100.0890 (19)0.0827 (18)0.0785 (17)−0.0061 (15)0.0123 (15)0.0160 (15)
C110.0792 (19)0.0711 (16)0.0945 (19)0.0097 (14)0.0181 (18)0.0029 (15)
C120.0732 (17)0.0607 (15)0.0778 (16)−0.0054 (13)0.0226 (15)−0.0030 (13)

Geometric parameters (Å, °)

O1—N11.2262 (19)C7—C81.496 (2)
O2—N11.2319 (19)C7—C121.497 (2)
N1—C11.445 (2)C8—C91.518 (3)
N2—C61.352 (2)C8—H8A0.9700
N2—N31.3906 (18)C8—H8B0.9700
N2—H20.8600C9—C101.504 (2)
N3—C71.262 (2)C9—H9A0.9700
C1—C21.385 (2)C9—H9B0.9700
C1—C61.402 (2)C10—C111.516 (3)
C2—C31.366 (3)C10—H10A0.9700
C2—H2B0.9300C10—H10B0.9700
C3—C41.381 (3)C11—C121.517 (3)
C3—H3B0.9300C11—H11A0.9700
C4—C51.359 (2)C11—H11B0.9700
C4—H4A0.9300C12—H12A0.9700
C5—C61.398 (2)C12—H12B0.9700
C5—H5A0.9300
O1—N1—O2121.5 (2)C7—C8—H8A109.5
O1—N1—C1119.5 (2)C9—C8—H8A109.5
O2—N1—C1119.0 (2)C7—C8—H8B109.5
C6—N2—N3119.62 (17)C9—C8—H8B109.5
C6—N2—H2120.2H8A—C8—H8B108.1
N3—N2—H2120.2C10—C9—C8112.17 (17)
C7—N3—N2116.77 (17)C10—C9—H9A109.2
C2—C1—C6121.8 (2)C8—C9—H9A109.2
C2—C1—N1116.4 (2)C10—C9—H9B109.2
C6—C1—N1121.8 (2)C8—C9—H9B109.2
C3—C2—C1120.2 (2)H9A—C9—H9B107.9
C3—C2—H2B119.9C9—C10—C11110.93 (18)
C1—C2—H2B119.9C9—C10—H10A109.5
C2—C3—C4118.7 (2)C11—C10—H10A109.5
C2—C3—H3B120.6C9—C10—H10B109.5
C4—C3—H3B120.6C11—C10—H10B109.5
C5—C4—C3121.6 (2)H10A—C10—H10B108.0
C5—C4—H4A119.2C10—C11—C12110.38 (18)
C3—C4—H4A119.2C10—C11—H11A109.6
C4—C5—C6121.5 (2)C12—C11—H11A109.6
C4—C5—H5A119.3C10—C11—H11B109.6
C6—C5—H5A119.3C12—C11—H11B109.6
N2—C6—C5120.2 (2)H11A—C11—H11B108.1
N2—C6—C1123.6 (2)C7—C12—C11111.55 (17)
C5—C6—C1116.2 (2)C7—C12—H12A109.3
N3—C7—C8128.90 (19)C11—C12—H12A109.3
N3—C7—C12116.2 (2)C7—C12—H12B109.3
C8—C7—C12114.9 (2)C11—C12—H12B109.3
C7—C8—C9110.68 (17)H12A—C12—H12B108.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.982.599 (2)128

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2561).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Shan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173–o1174.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography