PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1442.
Published online 2010 May 26. doi:  10.1107/S1600536810018775
PMCID: PMC2979473

2-[(2-Carboxy­phen­yl)disulfan­yl]benzoic acid–4,4′-bipyridyl N,N′-dioxide (1/2)

Abstract

In the title 2:1 adduct, C14H10O4S2·0.5C10H8N2O2, which arose from an unexpected oxidation of a precursor, the dihedral angle between the aromatic rings in the disulfide is 82.51 (11)°. In the crystal, the molecules are linked by O—H(...)O, O—H(...)N and C—H(...)O interactions, generating sheets.

Related literature

For structural studies of 4,4′-bipyridyl N,N′-dioxide, see: Lou & Huang (2007 [triangle]); Reddy et al. (2006 [triangle]). For the disulfide bond in polypeptide chains, see: Gortner & Hoffman (1941 [triangle]). For a related structure, see: Moreno-Fuquen et al. (2003 [triangle]). For hydrogen bonding, see: Etter (1990 [triangle]); Nardelli (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1442-scheme1.jpg

Experimental

Crystal data

  • C14H10O4S2·0.5C10H8N2O2
  • M r = 400.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1442-efi1.jpg
  • a = 21.314 (2) Å
  • b = 10.5621 (8) Å
  • c = 16.005 (8) Å
  • β = 105.412 (8)°
  • V = 3473.5 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 291 K
  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Rigaku AFC-7S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.951, T max = 0.990
  • 3066 measured reflections
  • 2781 independent reflections
  • 2658 reflections with I > 2σ(I)
  • R int = 0.046
  • 3 standard reflections every 120 min intensity decay: 0.9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.192
  • S = 1.11
  • 2781 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993 [triangle]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018775/hg2676sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018775/hg2676Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002 [triangle]). RMF also wishes to thank the Universidad del Valle, Colombia, and the Instituto de Física de São Carlos, Brasil, for partial financial support. LR acknowledges CNPq Brazil for a research fellowship.

supplementary crystallographic information

Comment

The title compound, C14H10O4S2, 0.5(C10H8N2O2), (I), belongs to a series of molecular systems based on 4,4'-bipyridyl N,N'-dioxide (DPNO) with diverse hydrogen-bond donors, that has been synthesized in our research group (Moreno-Fuquen et al., 2003). Several authors have reported the formation of co-crystals from DPNO moiety (Lou & Huang, 2007; Reddy et al., 2006), taking advantage of the strong acceptor character of the N-oxide group. Initially, it was unclear which intermolecular hydrogen bond is formed: S—H ··· O or O—H ··· O. The oxidation of sulfhydryl (S—H) group, of the 2-mercaptobenzoic acid (MBA), allows the formation of 2,2'-dicarboxyphenyldisulfide molecule (CPS), which enters in the reaction with DPNO to form the title co-crystal. The strong S—S disulfide bond formed in this structure, is important in linking polypeptide chains of proteins (Gortner & Hoffman, 1941). A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The DPNO and CPS molecules are held together by an intermolecular hydrogen bonds between the O1 atom of the N-oxide group of DPNO and the O5 and O3 of the CPS molecule, with O···O distances of 2.583 (3) and 2.672 (3) Å respectively. The central S1—S2 bond length is 2.0397 (10) Å and the Car-S—S-Car torsion angle is -86.15 (14)%. There are no intramolecular O—H ··· S bonds in the structure. It is noted however, that carboxylic groups of the CPS molecule, exhibit different behaviors with respect to the presence of the neighboring sulfur atom. Indeed, while one of the O—H group of carboxylic group is oriented away from the S1 atom [torsion angle C13 C14 C19 O5, -12.7 (5)°], the second O—H group is oriented near to S2 atom [torsion angle C8 C7 C6 O3 163.8 (3)]. the DPNO molecule is almost coplanar with one of the planes of the CPS molecule showing a dihedral angle of 0.71 (7)°. With the other plane of CPS, the DPNO molecule forms a dihedral angle of 82.52 (11)°. The growth of the crystal system can be explained through a hydrogen bonding scheme (Table 1) (Nardelli, 1995). The title molecule is characterized by the formation of O—H···O and O—H···N hydrogen bonds and other weak C—H···O interactions. In a first substructure atom O5 in the molecule at (x+1/2,-y+1/2,+z-1/2) and atom O3 in the molecule at (-x,-y,-z+1) act simultaneously as hydrogen bond donors to O1 atom in the molecule at (x,y,z). In turn, the O5 atom is linked to the N1 atom at (x,y,z). The propagation of these interactions forms a large R76(57) ring (Etter, 1990) in the (1 0 -2) plane (Fig. 2). In a second substructure, atom C17 in the molecule at (x,y,z) acts as hydrogen bond donor to O2 atom in the molecule at -x+1/2,+y-1/2,-z+1/2. The propagation of this interaction forms C(11) continuous chains and running along [010] direction. All of these interactions define an infinite two-dimensional network for the structure (I) (Fig. 3).

Experimental

The sinthesis of the title compound (I) was carried out by slow evaporation of equimolar quantities of 2-mercaptobenzoic acid (0.537 g., 0.0035 mol) and 4,4'-bipyridyl N,N'-dioxide (0.655 g) in 50 ml of dry acetonitrile. Pale-yellow prisms of good quality, suitable for X-ray analysis were obtained. The initial reagents were purchased from Aldrich Chemical Co. and were used as received.

Refinement

All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.
An ORTEP-3 (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary ...
Fig. 2.
The packing in the unit cell of (I) parallel to the (1 0 -2) plane, showing the R76(57) ring. Hydrogen-bonding interactions are presented as broken lines. Symmetry code: (i) x+1/2,-y+1/2,+z-1/2; (ii) -x,-y,-z+1.
Fig. 3.
The packing in the unit cell of (I) along [100], showing the formation of C(11) infinite chains. Hydrogen-bonding interactions are presented as broken lines. Symmetry code: (i) -x+1/2,+y-1/2,-z+1/2.

Crystal data

C14H10O4S2·0.5C10H8N2O2F(000) = 1656
Mr = 400.45Dx = 1.532 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 25 reflections
a = 21.314 (2) Åθ = 10.3–19.1°
b = 10.5621 (8) ŵ = 0.34 mm1
c = 16.005 (8) ÅT = 291 K
β = 105.412 (8)°Prism, pale-yellow
V = 3473.5 (18) Å30.22 × 0.18 × 0.12 mm
Z = 8

Data collection

Rigaku AFC-7S diffractometer2658 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.046
graphiteθmax = 25.1°, θmin = 2.0°
ω/2θ scansh = −25→24
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.951, Tmax = 0.990l = 0→19
3066 measured reflections3 standard reflections every 120 min
2781 independent reflections intensity decay: 0.9%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.192w = 1/[σ2(Fo2) + (0.1415P)2 + 4.1121P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2781 reflectionsΔρmax = 0.74 e Å3
244 parametersΔρmin = −0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S20.34651 (3)0.02160 (7)0.27473 (5)0.0381 (3)
S10.25516 (3)−0.05076 (8)0.22805 (5)0.0389 (3)
O20.13221 (10)−0.1328 (3)0.17027 (17)0.0487 (6)
O40.55073 (13)0.0281 (3)0.4215 (2)0.0761 (9)
O30.07037 (11)−0.1051 (3)0.03538 (17)0.0589 (7)
H30.0408−0.11590.05850.088*
O50.46308 (12)0.1178 (2)0.3372 (2)0.0690 (9)
H550.48290.18320.35510.103*
C130.39868 (14)−0.1151 (3)0.2968 (2)0.0359 (7)
C170.41418 (17)−0.3405 (3)0.2889 (2)0.0472 (8)
H170.3975−0.41970.26930.057*
C90.29901 (14)−0.0579 (3)0.0790 (2)0.0374 (7)
H90.3401−0.04040.11500.045*
C70.18433 (13)−0.0960 (2)0.0587 (2)0.0337 (7)
C140.46425 (14)−0.1032 (3)0.3434 (2)0.0379 (7)
C110.23059 (17)−0.0955 (3)−0.0634 (2)0.0443 (8)
H110.2254−0.1039−0.12270.053*
C80.24617 (13)−0.0705 (3)0.1146 (2)0.0335 (7)
C100.29099 (16)−0.0710 (3)−0.0088 (2)0.0428 (8)
H100.3268−0.0632−0.03140.051*
C180.37493 (15)−0.2348 (3)0.2689 (2)0.0421 (7)
H180.3320−0.24380.23630.051*
C190.49747 (14)0.0205 (3)0.3733 (2)0.0441 (8)
C60.12735 (14)−0.1140 (3)0.0947 (2)0.0395 (8)
C150.50222 (15)−0.2117 (3)0.3643 (2)0.0455 (8)
H150.5452−0.20410.39690.055*
C160.47782 (16)−0.3297 (3)0.3378 (2)0.0480 (8)
H160.5038−0.40120.35270.058*
C120.17762 (15)−0.1077 (3)−0.0295 (2)0.0422 (8)
H120.1368−0.1239−0.06650.051*
N10.08340 (11)0.1895 (2)0.91617 (17)0.0361 (6)
O10.01985 (9)0.1677 (2)0.88364 (16)0.0460 (6)
C40.18672 (14)0.2206 (3)0.8937 (2)0.0399 (7)
H40.21270.22560.85550.048*
C10.10782 (14)0.2062 (3)1.0006 (2)0.0449 (8)
H10.08040.20231.03710.054*
C30.21476 (12)0.2373 (2)0.98169 (19)0.0311 (6)
C20.17312 (14)0.2295 (3)1.0351 (2)0.0436 (8)
H20.18950.24001.09460.052*
C50.12157 (14)0.1970 (3)0.8619 (2)0.0428 (7)
H50.10380.18630.80270.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S20.0244 (4)0.0417 (5)0.0448 (6)−0.0003 (3)0.0033 (3)−0.0071 (3)
S10.0220 (4)0.0573 (5)0.0375 (6)−0.0022 (3)0.0081 (3)−0.0064 (3)
O20.0295 (11)0.0734 (15)0.0435 (17)−0.0045 (10)0.0101 (10)0.0060 (11)
O40.0343 (15)0.0647 (17)0.109 (3)−0.0041 (11)−0.0167 (15)−0.0058 (16)
O30.0253 (12)0.092 (2)0.0547 (16)−0.0101 (11)0.0029 (10)0.0050 (13)
O50.0371 (13)0.0452 (13)0.105 (2)−0.0065 (10)−0.0149 (13)−0.0014 (13)
C130.0301 (14)0.0420 (15)0.0366 (18)0.0015 (11)0.0104 (12)0.0001 (12)
C170.056 (2)0.0402 (16)0.050 (2)−0.0028 (14)0.0208 (16)−0.0012 (13)
C90.0296 (15)0.0405 (15)0.044 (2)−0.0018 (11)0.0129 (13)−0.0009 (12)
C70.0281 (14)0.0313 (13)0.040 (2)−0.0027 (10)0.0060 (12)0.0008 (11)
C140.0269 (14)0.0446 (16)0.044 (2)0.0017 (11)0.0127 (12)0.0010 (13)
C110.054 (2)0.0433 (16)0.038 (2)−0.0037 (14)0.0158 (15)−0.0013 (13)
C80.0247 (13)0.0328 (13)0.044 (2)0.0005 (10)0.0103 (12)−0.0008 (11)
C100.0435 (17)0.0418 (16)0.050 (2)−0.0021 (13)0.0243 (15)0.0017 (13)
C180.0367 (15)0.0448 (16)0.045 (2)−0.0064 (12)0.0107 (13)−0.0047 (13)
C190.0232 (16)0.0506 (18)0.057 (2)−0.0011 (12)0.0079 (14)−0.0019 (14)
C60.0256 (14)0.0360 (15)0.054 (2)−0.0054 (11)0.0055 (13)−0.0040 (13)
C150.0336 (15)0.0553 (19)0.050 (2)0.0077 (13)0.0142 (13)0.0056 (15)
C160.0466 (18)0.0494 (18)0.053 (2)0.0115 (14)0.0214 (15)0.0080 (14)
C120.0401 (17)0.0398 (16)0.043 (2)−0.0081 (12)0.0049 (14)−0.0055 (12)
N10.0223 (11)0.0340 (12)0.0523 (19)0.0035 (9)0.0108 (11)0.0060 (10)
O10.0191 (10)0.0503 (13)0.0661 (16)0.0003 (8)0.0071 (9)0.0062 (10)
C40.0290 (15)0.0531 (17)0.042 (2)0.0012 (12)0.0171 (13)0.0015 (13)
C10.0281 (14)0.065 (2)0.047 (2)−0.0006 (13)0.0187 (14)0.0026 (15)
C30.0253 (14)0.0300 (12)0.0416 (19)0.0032 (10)0.0152 (12)0.0025 (11)
C20.0277 (14)0.065 (2)0.042 (2)−0.0003 (13)0.0157 (13)−0.0003 (14)
C50.0316 (15)0.0500 (17)0.047 (2)0.0025 (13)0.0108 (14)0.0025 (14)

Geometric parameters (Å, °)

S2—C131.799 (3)C11—C101.375 (5)
S2—S12.0397 (10)C11—C121.383 (5)
S1—C81.786 (3)C11—H110.9300
O2—C61.203 (4)C10—H100.9300
O4—C191.194 (4)C18—H180.9300
O3—C61.331 (4)C15—C161.373 (5)
O3—H30.8200C15—H150.9300
O5—C191.305 (4)C16—H160.9300
O5—H550.8200C12—H120.9300
C13—C181.391 (4)N1—C11.324 (4)
C13—C141.404 (4)N1—O11.336 (3)
C17—C161.379 (5)N1—C51.340 (4)
C17—C181.380 (5)C4—C51.369 (4)
C17—H170.9300C4—C31.387 (5)
C9—C101.376 (5)C4—H40.9300
C9—C81.397 (4)C1—C21.376 (4)
C9—H90.9300C1—H10.9300
C7—C121.386 (5)C3—C21.389 (4)
C7—C81.408 (4)C3—C3i1.484 (5)
C7—C61.488 (4)C2—H20.9300
C14—C151.391 (4)C5—H50.9300
C14—C191.502 (4)
C13—S2—S1104.55 (10)O4—C19—C14123.5 (3)
C8—S1—S2104.49 (9)O5—C19—C14112.5 (3)
C6—O3—H3109.5O2—C6—O3123.2 (3)
C19—O5—H55109.5O2—C6—C7123.3 (3)
C18—C13—C14118.6 (3)O3—C6—C7113.5 (3)
C18—C13—S2120.9 (2)C16—C15—C14121.7 (3)
C14—C13—S2120.6 (2)C16—C15—H15119.2
C16—C17—C18120.6 (3)C14—C15—H15119.2
C16—C17—H17119.7C15—C16—C17119.0 (3)
C18—C17—H17119.7C15—C16—H16120.5
C10—C9—C8120.8 (3)C17—C16—H16120.5
C10—C9—H9119.6C11—C12—C7121.2 (3)
C8—C9—H9119.6C11—C12—H12119.4
C12—C7—C8119.3 (3)C7—C12—H12119.4
C12—C7—C6120.6 (3)C1—N1—O1120.2 (2)
C8—C7—C6120.1 (3)C1—N1—C5120.7 (3)
C15—C14—C13119.2 (3)O1—N1—C5119.0 (3)
C15—C14—C19116.4 (3)C5—C4—C3121.4 (3)
C13—C14—C19124.4 (3)C5—C4—H4119.3
C10—C11—C12119.5 (3)C3—C4—H4119.3
C10—C11—H11120.3N1—C1—C2121.0 (3)
C12—C11—H11120.3N1—C1—H1119.5
C9—C8—C7118.6 (3)C2—C1—H1119.5
C9—C8—S1121.5 (2)C4—C3—C2116.3 (3)
C7—C8—S1119.8 (2)C4—C3—C3i122.8 (3)
C11—C10—C9120.6 (3)C2—C3—C3i120.9 (3)
C11—C10—H10119.7C1—C2—C3120.5 (3)
C9—C10—H10119.7C1—C2—H2119.8
C17—C18—C13120.9 (3)C3—C2—H2119.8
C17—C18—H18119.5N1—C5—C4120.0 (3)
C13—C18—H18119.5N1—C5—H5120.0
O4—C19—O5123.9 (3)C4—C5—H5120.0
C13—S2—S1—C8−86.15 (14)C13—C14—C19—O5−12.7 (5)
S1—S2—C13—C1810.1 (3)C12—C7—C6—O2163.0 (3)
S1—S2—C13—C14−169.3 (2)C8—C7—C6—O2−15.1 (4)
C18—C13—C14—C15−3.6 (5)C12—C7—C6—O3−18.1 (4)
S2—C13—C14—C15175.9 (2)C8—C7—C6—O3163.8 (3)
C18—C13—C14—C19176.5 (3)C13—C14—C15—C162.3 (5)
S2—C13—C14—C19−4.1 (4)C19—C14—C15—C16−177.7 (3)
C10—C9—C8—C7−0.5 (4)C14—C15—C16—C170.4 (5)
C10—C9—C8—S1−178.8 (2)C18—C17—C16—C15−1.9 (5)
C12—C7—C8—C9−0.1 (4)C10—C11—C12—C7−0.2 (5)
C6—C7—C8—C9178.1 (3)C8—C7—C12—C110.4 (4)
C12—C7—C8—S1178.2 (2)C6—C7—C12—C11−177.7 (3)
C6—C7—C8—S1−3.6 (4)O1—N1—C1—C2−179.6 (3)
S2—S1—C8—C910.4 (2)C5—N1—C1—C2−1.3 (5)
S2—S1—C8—C7−167.9 (2)C5—C4—C3—C2−0.4 (4)
C12—C11—C10—C9−0.3 (5)C5—C4—C3—C3i179.8 (3)
C8—C9—C10—C110.7 (5)N1—C1—C2—C30.8 (5)
C16—C17—C18—C130.5 (5)C4—C3—C2—C10.1 (5)
C14—C13—C18—C172.2 (5)C3i—C3—C2—C1179.8 (3)
S2—C13—C18—C17−177.2 (3)C1—N1—C5—C40.9 (5)
C15—C14—C19—O4−9.3 (5)O1—N1—C5—C4179.3 (3)
C13—C14—C19—O4170.6 (4)C3—C4—C5—N1−0.1 (5)
C15—C14—C19—O5167.4 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H55···O1ii0.821.772.583 (3)174
O3—H3···O1iii0.821.862.672 (3)170
O5—H55···N1ii0.822.503.255 (3)154
C17—H17···O2iv0.932.593.359 (4)140

Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (iii) −x, −y, −z+1; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2676).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Etter, M. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gortner, R. A. & Hoffman, W. F. (1941). Org. Synth. Coll.1, 1941.
  • Lou, B.-Y. & Huang, Y.-B. (2007). Acta Cryst. C63, o246–o248. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software MSC, The Woodlands, Texas, USA.
  • Molecular Structure Corporation (1995). TEXSAN/TEXRAY MSC, The Woodlands, Texas, USA.
  • Moreno-Fuquen, R., Font i Carot, M., Garriga, M., Cano, F., Martinez-Ripoll, M., Valderrama-Naranjo, J. & Serratto, L. M. (2003). Acta Cryst. E59, o495–o497.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Reddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. pp. 1369–1371. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography