PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1260.
Published online 2010 May 8. doi:  10.1107/S1600536810015655
PMCID: PMC2979464

3-Amino­phenyl­boronic acid monohydrate

Abstract

In the title compound, C6H8BNO2·H2O, the almost planar boronic acid mol­ecules (r.m.s. deviation = 0.044 Å) form inversion dimers, linked by pairs of O—H(...)O hydrogen bonds. The water mol­ecules link these dimers into [100] chains by way of O—H(...)O hydrogen bonds, and N—H(...)O links generate (100) sheets.

Related literature

For background to the synthesis, structures and applications of phenyl­boronic acid derivatives, see: Barba & Betanzos (2007 [triangle]); Barba et al. (2004 [triangle], 2006 [triangle]); Bernstein et al. (1995 [triangle]); Christinat et al. (2008 [triangle]); Dreos et al. (2002 [triangle]); Fujita et al. (2008 [triangle]); Höpfl (2002 [triangle]); Hall (2005 [triangle]); Lulinski et al. (2007 [triangle]); Miyaura & Suzuki (1995 [triangle]); Severin (2009 [triangle]); Shinkai et al. (2001 [triangle]); Smith et al. (2008 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1260-scheme1.jpg

Experimental

Crystal data

  • C6H8BNO2·H2O
  • M r = 154.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1260-efi1.jpg
  • a = 7.1211 (8) Å
  • b = 13.8548 (15) Å
  • c = 7.8475 (8) Å
  • β = 100.663 (2)°
  • V = 760.88 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.44 × 0.38 × 0.34 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.89, T max = 1.00
  • 7077 measured reflections
  • 1341 independent reflections
  • 1258 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.088
  • S = 1.03
  • 1341 reflections
  • 124 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2001 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015655/hb5409sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015655/hb5409Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

supplementary crystallographic information

Comment

Substituted phenylboronic acid derivatives have been prepared mainly for applications in organic synthesis (Miyaura & Suzuki, 1995; Hall, 2005) and for molecular recognition of biochemically active molecules (Shinkai et al., 2001). More recently, such boronic acid derivatives have attracted attention also as building blocks for the self-assembly of macrocyclic and polymeric assemblies. For this purpose, the boronic acid is generally converted to an ester (boronate) via condensation with an aliphatic or aromatic diol, which is then assembled to a macromolecular structure via reaction of the additional functional group attached to the B-phenyl ring (Höpfl, 2002; Fujita et al., 2008; Severin, 2009). In this context, 3-aminophenylboronic acid has been employed for the generation of macrocycles and cages (Dreos et al., 2002; Barba et al., 2004 and 2006; Barba & Betanzos, 2007; Christinat et al., 2008).

We report herein on the molecular and crystal structure of 3-aminophenylboronic acid monohydrate (I).

The asymmetric unit of I contains one 3-aminophenylboronic acid and one water molecule (Figure 1). The boronic acid molecules are associated through the well-known -B(OH)2···(HO)2B-synthon (motif A) with the graph set R22(8) (Bernstein et al., 1995), in which each B(OH)2 group has syn-anti conformation (with respect to the H atoms), thus allowing for the formation of additional hydrogen bonds with the water molecules included in the crystal lattice. These (B)O—H···Ow hydrogen bonds give rise to a cyclic water-expanded motif B [graph set R66(12)] of the boronic acid homodimer, thus generating a 1D chain along axis a (Figure 2). The (OH)6 ring has chair-conformation and has been observed previously in the crystal structures of 3,5-dibromo-2-formylphenylboronic acid monohydrate (Lulinski et al., 2007), 5-quinolineboronic acid monohydrate (Zhang et al., 2007) and 2,6-dichloro-3-pyridylboronic acid hemihydrate (Smith et al., 2008). The 1D chains are interconnected through Ow—H···N, N—H···Ow and N—H···O(B) hydrogen bonds to give an overall 3D hydrogen bonded network (Table 1).

Experimental

3-Aminophenylboronic acid monohydrate is a commercially available product that has been crystallized from a solvent mixture of benzene, methanol and water to generate colourless blocks of (I); M.p. 368 K.

Refinement

H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C)]. Hydrogen atoms bonded to O (H1', H2', H31A and H31B) and N (H1A and H1B) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.84±0.01 Å, N—H = 0.86 Å ±0.01 and [Uiso(H) = 1.5 Ueq(O,N)].

Figures

Fig. 1.
Perspective view of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
In the crystal structure of (I) homodimeric boronic acid motifs A and water-expanded motifs B are linked to 1D hydrogen-bonded chains.

Crystal data

C6H8BNO2·H2OF(000) = 328
Mr = 154.96Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point: 368 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1211 (8) ÅCell parameters from 4929 reflections
b = 13.8548 (15) Åθ = 2.9–28.3°
c = 7.8475 (8) ŵ = 0.11 mm1
β = 100.663 (2)°T = 100 K
V = 760.88 (14) Å3Block, colourless
Z = 40.44 × 0.38 × 0.34 mm

Data collection

Bruker SMART APEX CCD diffractometer1341 independent reflections
Radiation source: fine-focus sealed tube1258 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 2.9°
phi and ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −16→16
Tmin = 0.89, Tmax = 1.00l = −9→9
7077 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0487P)2 + 0.3165P] where P = (Fo2 + 2Fc2)/3
1341 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.5617 (2)0.06346 (10)0.24383 (18)0.0160 (3)
N11.02034 (15)0.15487 (8)0.78329 (14)0.0186 (3)
H1A1.030 (2)0.1547 (11)0.8942 (3)0.022 (4)*
H1B1.0986 (18)0.1138 (9)0.753 (2)0.029 (4)*
O10.71516 (12)0.03223 (7)0.17614 (11)0.0180 (2)
H1'0.682 (3)0.0084 (12)0.0767 (10)0.038 (5)*
O20.38624 (12)0.05950 (6)0.13944 (11)0.0179 (2)
H2'0.2917 (15)0.0828 (12)0.175 (2)0.036 (5)*
C10.60035 (17)0.10356 (8)0.43486 (16)0.0151 (3)
C20.78720 (17)0.10598 (8)0.52950 (16)0.0158 (3)
H20.88810.08090.47860.019*
C30.82923 (17)0.14429 (8)0.69650 (16)0.0151 (3)
C40.68011 (18)0.17961 (9)0.77225 (16)0.0171 (3)
H40.70620.20510.88660.021*
C50.49436 (18)0.17741 (9)0.68042 (16)0.0181 (3)
H50.39350.20180.73220.022*
C60.45380 (17)0.13999 (9)0.51337 (16)0.0163 (3)
H60.32570.13910.45190.020*
O310.05437 (12)0.14588 (7)0.17821 (12)0.0199 (2)
H31A0.048 (3)0.2022 (5)0.217 (2)0.041 (5)*
H31B−0.0485 (14)0.1179 (12)0.186 (2)0.040 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0179 (7)0.0120 (7)0.0181 (7)−0.0012 (5)0.0037 (6)0.0013 (5)
N10.0161 (6)0.0235 (6)0.0156 (6)0.0018 (4)0.0016 (4)−0.0009 (4)
O10.0155 (5)0.0228 (5)0.0152 (5)0.0002 (4)0.0017 (3)−0.0049 (4)
O20.0143 (5)0.0221 (5)0.0172 (5)0.0019 (4)0.0026 (4)−0.0047 (4)
C10.0174 (6)0.0110 (6)0.0171 (6)−0.0019 (5)0.0034 (5)0.0016 (5)
C20.0167 (6)0.0137 (6)0.0179 (6)0.0010 (5)0.0058 (5)0.0014 (5)
C30.0164 (6)0.0126 (6)0.0158 (6)−0.0008 (5)0.0019 (5)0.0030 (5)
C40.0206 (7)0.0153 (6)0.0156 (6)−0.0012 (5)0.0038 (5)−0.0013 (5)
C50.0177 (6)0.0159 (6)0.0219 (7)0.0011 (5)0.0072 (5)−0.0007 (5)
C60.0135 (6)0.0157 (6)0.0190 (6)−0.0015 (5)0.0013 (5)0.0004 (5)
O310.0154 (5)0.0228 (5)0.0219 (5)0.0007 (4)0.0045 (4)−0.0031 (4)

Geometric parameters (Å, °)

B1—O21.3623 (17)C2—C31.3941 (18)
B1—O11.3707 (17)C2—H20.9500
B1—C11.5745 (18)C3—C41.3980 (18)
N1—C31.4122 (16)C4—C51.3846 (18)
N1—H1A0.860 (3)C4—H40.9500
N1—H1B0.860 (13)C5—C61.3894 (18)
O1—H1'0.840 (10)C5—H50.9500
O2—H2'0.840 (13)C6—H60.9500
C1—C21.3991 (17)O31—H31A0.842 (9)
C1—C61.4005 (18)O31—H31B0.841 (12)
O2—B1—O1117.55 (11)C2—C3—C4119.02 (11)
O2—B1—C1124.48 (11)C2—C3—N1120.86 (11)
O1—B1—C1117.95 (11)C4—C3—N1119.91 (11)
C3—N1—H1A112.3 (11)C5—C4—C3119.91 (11)
C3—N1—H1B114.4 (11)C5—C4—H4120.0
H1A—N1—H1B109.9 (15)C3—C4—H4120.0
B1—O1—H1'112.2 (13)C4—C5—C6120.73 (11)
B1—O2—H2'119.1 (12)C4—C5—H5119.6
C2—C1—C6118.08 (11)C6—C5—H5119.6
C2—C1—B1119.71 (11)C5—C6—C1120.52 (11)
C6—C1—B1122.19 (11)C5—C6—H6119.7
C3—C2—C1121.72 (11)C1—C6—H6119.7
C3—C2—H2119.1H31A—O31—H31B107.4 (18)
C1—C2—H2119.1
O2—B1—C1—C2−178.77 (11)C1—C2—C3—N1−173.67 (11)
O1—B1—C1—C2−0.23 (17)C2—C3—C4—C5−0.90 (18)
O2—B1—C1—C6−0.64 (19)N1—C3—C4—C5173.96 (11)
O1—B1—C1—C6177.90 (11)C3—C4—C5—C60.28 (18)
C6—C1—C2—C3−0.73 (18)C4—C5—C6—C10.13 (18)
B1—C1—C2—C3177.47 (11)C2—C1—C6—C50.08 (18)
C1—C2—C3—C41.14 (18)B1—C1—C6—C5−178.07 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1'···O2i0.84 (1)1.92 (1)2.7583 (13)174 (2)
N1—H1A···O31ii0.86 (1)2.21 (1)3.0661 (15)177 (1)
N1—H1B···O1iii0.86 (1)2.43 (1)3.1854 (15)147 (1)
O2—H2'···O310.84 (1)1.91 (1)2.7159 (13)161 (2)
O31—H31A···N1iv0.84 (1)2.07 (1)2.9040 (15)173 (2)
O31—H31B···O1v0.84 (1)2.05 (1)2.8810 (13)170 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z+1; (iii) −x+2, −y, −z+1; (iv) x−1, −y+1/2, z−1/2; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5409).

References

  • Barba, V. & Betanzos, I. (2007). J. Organomet. Chem.692, 4903–4908.
  • Barba, V., Höpfl, H., Farfán, N., Santillan, R., Beltrán, H. I. & Zamudio-Rivera, L. S. (2004). Chem. Commun. pp. 2834–2835. [PubMed]
  • Barba, V., Villamil, R., Luna, R., Godoy-Alcantar, C., Höpfl, H., Beltrán, H. I., Zamudio-Rivera, L. S., Santillan, R. & Farfán, N. (2006). Inorg. Chem.45, 2553–2561. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed.34, 1555–1573.
  • Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Christinat, N., Scopelliti, R. & Severin, K. (2008). Angew. Chem. Int. Ed.47, 1848–1852. [PubMed]
  • Dreos, R., Nardin, G., Randaccio, L., Siega, P. & Tauzher, G. (2002). Eur. J. Inorg. Chem. pp. 2885–2890.
  • Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J.3, 1076–1091. [PubMed]
  • Hall, D. G. (2005). Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine Weinheim: Wiley-VCH.
  • Höpfl, H. (2002). Struct. Bond.103, 1–56.
  • Lulinski, S., Madura, I., Serwatowski, J., Szatylowicz, H. & Zachara, J. (2007). New J. Chem.31, 144–154.
  • Miyaura, N. & Suzuki, A. (1995). Chem. Rev.95, 2457–2483.
  • Severin, K. (2009). Dalton Trans pp. 5254–5264. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shinkai, S., Ikeda, M., Sugasaki, A. & Takeuchi, M. (2001). Acc. Chem. Res.34, 494–503. [PubMed]
  • Smith, A. E., Clapham, K. M., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2008). Eur. J. Org. Chem. pp. 1458–1463.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Zhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287–3292. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography