PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m686.
Published online 2010 May 22. doi:  10.1107/S1600536810018453
PMCID: PMC2979461

(Ferrocenylmeth­yl)dimethyl­ammonium bromide

Abstract

The title compound, [Fe(C5H5)(C8H13N)]Br, is isotypic with the analogous chloride compound. The Fe—C bond lengths are in the range 2.020 (6)–2.048 (7) Å. In the crystal, the cations and bromide anions are connected by N+—H(...)Br hydrogen bonds.

Related literature

For the isotypic chloride compound, see: Winter & Wolmershauser (1998 [triangle]). For other structures containing the (N-ferrocenylmeth­yl)dimethyl­ammonium cation, see: Gibbons & Trotter (1971 [triangle]); Guo (2006 [triangle]); Guo, Yang & Zhang (2006 [triangle]); Guo, Zhou et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m686-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C8H13N)]Br
  • M r = 324.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m686-efi1.jpg
  • a = 21.393 (4) Å
  • b = 5.9296 (12) Å
  • c = 10.798 (2) Å
  • V = 1369.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.99 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.450, T max = 0.468
  • 13217 measured reflections
  • 3117 independent reflections
  • 2638 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.078
  • S = 1.08
  • 3117 reflections
  • 147 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.51 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1474 Friedel pairs
  • Flack parameter: 0.011 (12)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018453/bi2381sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018453/bi2381Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

A number of crystal structures containing the (N-ferrocenylmethyl)dimethylammonium cation, [Fe(C5H5)(C8H13N)]+, have been reported, including [Fe(C5H5)(C8H13N)]+Cl-.2H2O (Guo, Zhou et al., 2006), 2[Fe(C5H5)(C8H13N)]+[ZnCl4]2-.H2O (Gibbons & Trotter, 1971), [Fe(C5H5)(C8H13N)]+NO3- (Guo, Yang & Zhang, 2006) and 2[Fe(C5H5)(C8H13N)]+SO42-.5H2O (Guo, 2006). The analogous chloride compound has also been reported (Winter & Wolmershauser, 1998) and the title compound is isomorphous with it.

The asymmetric unit consists of one (N-ferrocenylmethyl)dimethylammonium cation and one bromide anion (Fig. 1). The Fe atom is bonded to the two five-membered carbon rings with Fe—C bond lengths in the range 2.020 (6)-2.048 (7) Å, with mean values of 2.036 and 2.025Å for the unsubstituted and substituted Cp rings, respectively. The Fe···Cp plane distances are 1.638 and 1.651 Å for Cp1 and Cp2, respectively, and the Cp1—Fe—Cp2 angle is 178.58°. These suggest that an interaction may exist between the methyldimethylamine group and the Fe atom, drawing the less electron-rich substituted Cp ligand marginally closer to the metal centre. The two rings, Cp1(C1–C5) and Cp2 (C6–C10), are nearly parallel with a dihedral angle between their mean planes of 1.7°. They exhibit a nearly eclipsed conformation, as is usually found in other ferrocene derivatives (for example, the structures listed above).

In the crystal structure, the cations and bromide ions are connected by N+—H···Br- hydrogen bonds (Fig. 2).

Experimental

(Ferrocenylmethyl)dimethylamine (0.607 g, 2.5 mmol) was dissolved in ethanol (15 ml) and a yellow solid was obtained after adding HBr (0.5 g, 40%). The precipitate was dissolved by adding DMF and single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvents over a period of 7 days.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T—T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range. Similarly, below the melting point of the compound (184°C), the dielectric constant as a function of temperature goes smoothly, and no dielectric anomaly is observed.

Refinement

H atoms bound to C atoms were positioned geometrically, with C—H = 0.98, 0.97 and 0.96 Å for those on cyclopentadienyl, methylene and methyl C atoms, respectively, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq (methyl C). The methyl groups were allowed to rotate about their local threefold axes. Atom H1A was positioned geometrically and allowed to ride on N1, with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms on C have been omitted for clarity.
Fig. 2.
Crystal packing of the title compound viewed along the a axis showing the N+—H···Br- interactions (dotted line). Short C—H···Br- contacts are also indicated.

Crystal data

[Fe(C5H5)(C8H13N)]BrDx = 1.571 Mg m3
Mr = 324.04Melting point: 457 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6130 reflections
a = 21.393 (4) Åθ = 3.4–27.6°
b = 5.9296 (12) ŵ = 3.99 mm1
c = 10.798 (2) ÅT = 298 K
V = 1369.7 (5) Å3Prism, yellow
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 656

Data collection

Rigaku SCXmini diffractometer3117 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
graphiteRint = 0.056
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan CrystalClear (Rigaku, 2005)h = −27→27
Tmin = 0.450, Tmax = 0.468k = −7→7
13217 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0233P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3117 reflectionsΔρmax = 0.28 e Å3
147 parametersΔρmin = −0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 1474 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.011 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.56302 (2)0.12331 (6)0.47649 (4)0.05861 (15)
Fe10.31150 (2)0.40436 (7)0.28011 (5)0.03551 (13)
N10.51727 (12)0.3869 (4)0.2374 (3)0.0333 (7)
H1A0.52300.30240.30690.040*
C10.40534 (14)0.4348 (5)0.2980 (3)0.0309 (7)
C20.38089 (16)0.2954 (6)0.3942 (3)0.0383 (8)
H2A0.39220.13790.41030.046*
C30.33669 (18)0.4253 (7)0.4615 (4)0.0472 (10)
H3A0.31190.37270.53210.057*
C40.33448 (18)0.6430 (6)0.4089 (4)0.0462 (10)
H4A0.30780.76770.43640.055*
C50.37663 (15)0.6481 (5)0.3083 (3)0.0351 (8)
H5A0.38430.77770.25410.042*
C60.22327 (19)0.2783 (10)0.2675 (5)0.0724 (14)
H6A0.19590.24120.33750.087*
C70.22629 (19)0.4831 (8)0.2085 (4)0.0591 (12)
H7A0.20160.61660.23020.071*
C80.2691 (2)0.4729 (9)0.1167 (4)0.0666 (13)
H8A0.28010.59620.06030.080*
C90.2945 (2)0.2549 (12)0.1143 (6)0.0845 (19)
H9A0.32580.19780.05600.101*
C100.2658 (3)0.1322 (7)0.2113 (7)0.090 (2)
H10A0.2732−0.02620.23280.108*
C110.44972 (15)0.3637 (6)0.2002 (4)0.0357 (9)
H11A0.44240.45380.12660.043*
H11B0.44150.20740.17900.043*
C120.55769 (16)0.2923 (9)0.1398 (4)0.0611 (12)
H12A0.54560.13930.12350.092*
H12B0.60040.29600.16680.092*
H12C0.55330.38020.06570.092*
C130.5351 (2)0.6194 (5)0.2675 (5)0.0614 (12)
H13A0.57860.62420.28930.092*
H13B0.51040.67200.33600.092*
H13C0.52780.71430.19690.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0834 (3)0.0501 (2)0.0424 (2)0.0079 (2)−0.0100 (2)0.0080 (2)
Fe10.0313 (2)0.0357 (3)0.0395 (3)−0.00206 (18)−0.0070 (3)−0.0036 (3)
N10.0348 (16)0.0343 (16)0.0308 (16)0.0011 (11)−0.0007 (12)0.0048 (12)
C10.0279 (15)0.0322 (16)0.032 (2)−0.0026 (13)−0.0029 (15)−0.0051 (15)
C20.036 (2)0.039 (2)0.040 (2)−0.0068 (16)−0.0095 (17)0.0043 (17)
C30.037 (2)0.072 (3)0.033 (2)−0.0095 (18)0.0045 (18)0.000 (2)
C40.037 (2)0.051 (3)0.050 (2)0.0009 (16)−0.0006 (19)−0.0205 (19)
C50.0353 (18)0.0278 (18)0.042 (2)−0.0027 (12)−0.0022 (16)−0.0036 (15)
C60.040 (2)0.103 (4)0.074 (4)−0.030 (3)−0.024 (3)0.007 (3)
C70.046 (2)0.063 (3)0.068 (3)0.013 (2)−0.023 (2)−0.007 (3)
C80.068 (3)0.080 (4)0.051 (3)−0.008 (3)−0.024 (2)0.008 (3)
C90.049 (3)0.128 (5)0.076 (4)0.016 (3)−0.031 (3)−0.064 (4)
C100.091 (4)0.034 (3)0.145 (6)−0.013 (3)−0.078 (4)−0.002 (3)
C110.0324 (19)0.040 (2)0.035 (2)0.0025 (14)−0.0033 (15)−0.0050 (15)
C120.042 (2)0.089 (3)0.053 (3)0.000 (2)0.016 (2)−0.001 (3)
C130.054 (2)0.054 (3)0.077 (4)−0.0162 (17)−0.010 (3)0.003 (3)

Geometric parameters (Å, °)

Fe1—C12.025 (3)C4—C51.412 (5)
Fe1—C82.025 (4)C4—H4A0.980
Fe1—C102.029 (4)C5—H5A0.980
Fe1—C52.031 (3)C6—C71.373 (7)
Fe1—C92.031 (5)C6—C101.395 (8)
Fe1—C72.034 (4)C6—H6A0.980
Fe1—C22.034 (3)C7—C81.351 (6)
Fe1—C62.035 (4)C7—H7A0.980
Fe1—C32.035 (4)C8—C91.402 (7)
Fe1—C42.044 (4)C8—H8A0.980
N1—C131.467 (4)C9—C101.416 (8)
N1—C121.474 (5)C9—H9A0.980
N1—C111.506 (4)C10—H10A0.980
N1—H1A0.910C11—H11A0.970
C1—C51.410 (4)C11—H11B0.970
C1—C21.427 (5)C12—H12A0.960
C1—C111.482 (5)C12—H12B0.960
C2—C31.420 (5)C12—H12C0.960
C2—H2A0.980C13—H13A0.960
C3—C41.411 (5)C13—H13B0.960
C3—H3A0.980C13—H13C0.960
C1—Fe1—C8120.62 (19)C2—C3—Fe169.5 (2)
C1—Fe1—C10125.8 (2)C4—C3—H3A125.9
C8—Fe1—C1067.9 (2)C2—C3—H3A125.9
C1—Fe1—C540.70 (12)Fe1—C3—H3A125.9
C8—Fe1—C5107.17 (17)C3—C4—C5107.9 (3)
C10—Fe1—C5162.2 (3)C3—C4—Fe169.4 (2)
C1—Fe1—C9107.51 (17)C5—C4—Fe169.2 (2)
C8—Fe1—C940.4 (2)C3—C4—H4A126.0
C10—Fe1—C940.8 (2)C5—C4—H4A126.0
C5—Fe1—C9124.5 (2)Fe1—C4—H4A126.0
C1—Fe1—C7154.72 (18)C1—C5—C4108.6 (3)
C8—Fe1—C738.89 (18)C1—C5—Fe169.44 (16)
C10—Fe1—C767.12 (19)C4—C5—Fe170.24 (19)
C5—Fe1—C7120.56 (16)C1—C5—H5A125.7
C9—Fe1—C766.71 (19)C4—C5—H5A125.7
C1—Fe1—C241.15 (14)Fe1—C5—H5A125.7
C8—Fe1—C2156.64 (19)C7—C6—C10108.5 (5)
C10—Fe1—C2108.73 (17)C7—C6—Fe170.3 (2)
C5—Fe1—C268.57 (13)C10—C6—Fe169.7 (2)
C9—Fe1—C2121.73 (19)C7—C6—H6A125.8
C7—Fe1—C2163.11 (19)C10—C6—H6A125.8
C1—Fe1—C6163.51 (19)Fe1—C6—H6A125.8
C8—Fe1—C666.4 (2)C8—C7—C6109.4 (5)
C10—Fe1—C640.2 (2)C8—C7—Fe170.2 (2)
C5—Fe1—C6155.2 (2)C6—C7—Fe170.3 (2)
C9—Fe1—C667.3 (2)C8—C7—H7A125.3
C7—Fe1—C639.44 (19)C6—C7—H7A125.3
C2—Fe1—C6126.91 (19)Fe1—C7—H7A125.3
C1—Fe1—C368.90 (15)C7—C8—C9108.5 (5)
C8—Fe1—C3160.9 (2)C7—C8—Fe170.9 (3)
C10—Fe1—C3121.9 (2)C9—C8—Fe170.0 (3)
C5—Fe1—C368.31 (15)C7—C8—H8A125.7
C9—Fe1—C3157.3 (2)C9—C8—H8A125.7
C7—Fe1—C3126.08 (18)Fe1—C8—H8A125.7
C2—Fe1—C340.84 (15)C8—C9—C10107.0 (5)
C6—Fe1—C3109.4 (2)C8—C9—Fe169.6 (3)
C1—Fe1—C468.57 (14)C10—C9—Fe169.5 (3)
C8—Fe1—C4124.18 (19)C8—C9—H9A126.5
C10—Fe1—C4156.4 (3)C10—C9—H9A126.5
C5—Fe1—C440.55 (15)Fe1—C9—H9A126.5
C9—Fe1—C4160.9 (3)C6—C10—C9106.6 (4)
C7—Fe1—C4108.37 (17)C6—C10—Fe170.1 (3)
C2—Fe1—C468.43 (15)C9—C10—Fe169.7 (2)
C6—Fe1—C4121.5 (2)C6—C10—H10A126.7
C3—Fe1—C440.46 (15)C9—C10—H10A126.7
C13—N1—C12111.3 (3)Fe1—C10—H10A126.7
C13—N1—C11113.2 (3)C1—C11—N1113.4 (3)
C12—N1—C11109.7 (3)C1—C11—H11A108.9
C13—N1—H1A107.5N1—C11—H11A108.9
C12—N1—H1A107.5C1—C11—H11B108.9
C11—N1—H1A107.5N1—C11—H11B108.9
C5—C1—C2107.6 (3)H11A—C11—H11B107.7
C5—C1—C11126.2 (3)N1—C12—H12A109.5
C2—C1—C11126.1 (3)N1—C12—H12B109.5
C5—C1—Fe169.86 (18)H12A—C12—H12B109.5
C2—C1—Fe169.78 (18)N1—C12—H12C109.5
C11—C1—Fe1122.8 (2)H12A—C12—H12C109.5
C3—C2—C1107.6 (3)H12B—C12—H12C109.5
C3—C2—Fe169.6 (2)N1—C13—H13A109.5
C1—C2—Fe169.07 (19)N1—C13—H13B109.5
C3—C2—H2A126.2H13A—C13—H13B109.5
C1—C2—H2A126.2N1—C13—H13C109.5
Fe1—C2—H2A126.2H13A—C13—H13C109.5
C4—C3—C2108.2 (3)H13B—C13—H13C109.5
C4—C3—Fe170.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.912.283.172 (3)165

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2381).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659–2662.
  • Guo, H.-X. (2006). Acta Cryst. C62, m504–m506. [PubMed]
  • Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006). Acta Cryst. E62, m1338–m1339.
  • Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770–m1772.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Winter, R. F. & Wolmershauser, G. (1998). J. Organomet. Chem.570, 201–218.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography