PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1334.
Published online 2010 May 15. doi:  10.1107/S1600536810016934
PMCID: PMC2979454

Diethyl 2,6-dimethyl-4-(4-pyrid­yl)-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

Abstract

In the title compound, C18H22N2O4, the dihedral angle between the two rings is 87.90 (6)°. The mean devation of the atoms in the dihydropyridine plane is 0.082 (3) Å. In the crystal, mol­ecules are linked by inter­molecular N—H(...)N hydrogen bonds, generating chains.

Related literature

For general background to the biological activity of 1,4-dihydro­pyridine derivatives, see: Gaudio et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1334-scheme1.jpg

Experimental

Crystal data

  • C18H22N2O4
  • M r = 330.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1334-efi1.jpg
  • a = 11.5550 (2) Å
  • b = 13.1707 (2) Å
  • c = 11.8020 (2) Å
  • β = 92.705 (2)°
  • V = 1794.11 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.990, T max = 0.993
  • 9122 measured reflections
  • 3152 independent reflections
  • 2308 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.128
  • S = 1.03
  • 3152 reflections
  • 227 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016934/om2336sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016934/om2336Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994).

The molecular structure of the title compound is shown in Fig 1. The dihedral angle between the two rings is 87.90 (6) °. The mean devation of the dihydropyridine plane is 0.082 (3)Å. The intermolecular hydrogen bonding of N(2)—H(2A)···N(1) leads to a consolidation of the structure (Fig. 2; Table 1).

Experimental

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate was purchased from Jinan Henghua Science & Technology Co. Ltd. Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate (1 mmoL 0.39 g) was dissolved in 20 ml ethanol, which was evaporated in an open flask at room temperature. One week later, yellow block crystals suitable for the X-ray experiment were obained. Anal. C18H22N2O4: C, 65.37; H, 6.66; N, 8.48 %. Found: C, 65.32; H, 6.45; N, 8.39 %.

Refinement

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). For methyl groups C—H distances were 0.96 Å and Uiso = 1.5Ueq(C) . Two of the methyl groups were found to have two sets of methyl hydrogens and were refined with AFIX 127 and major part occupanices that refined to 0.60 (2) and 0.59 (2) for C17 and C18, respectively. The hydrogen atom attached to the hydropyridine nitrogen was freely refined.

Crystal data

C18H22N2O4F(000) = 704
Mr = 330.38Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2361 reflections
a = 11.5550 (2) Åθ = 2.3–24.5°
b = 13.1707 (2) ŵ = 0.09 mm1
c = 11.8020 (2) ÅT = 296 K
β = 92.705 (2)°Block, yellow
V = 1794.11 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3152 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→13
Tmin = 0.990, Tmax = 0.993k = −15→15
9122 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2873P] where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.33862 (13)0.01201 (15)0.15684 (14)0.0917 (6)
O20.50534 (12)−0.07176 (10)0.16753 (11)0.0597 (4)
O30.80150 (10)0.08444 (10)0.58574 (10)0.0539 (4)
O40.81559 (11)−0.01782 (11)0.43654 (12)0.0630 (4)
N10.82662 (14)0.18151 (15)0.07048 (14)0.0616 (5)
N20.47955 (13)0.18372 (12)0.43985 (13)0.0472 (4)
H2N0.4391 (17)0.2279 (15)0.4751 (16)0.058 (6)*
C10.76016 (19)0.23648 (17)0.13643 (17)0.0626 (6)
H10.75950.30660.12720.075*
C20.69267 (17)0.19512 (14)0.21726 (16)0.0527 (5)
H20.64820.23740.26100.063*
C30.69017 (13)0.09216 (12)0.23420 (13)0.0376 (4)
C40.75744 (16)0.03451 (15)0.16496 (15)0.0525 (5)
H40.7586−0.03580.17170.063*
C50.82298 (17)0.08201 (18)0.08560 (17)0.0631 (6)
H50.86740.04150.03990.076*
C60.76250 (15)0.04661 (14)0.48574 (14)0.0431 (4)
C70.91311 (16)0.04589 (17)0.62964 (17)0.0601 (5)
H7A0.97390.06640.58060.072*
H7B0.9116−0.02770.63280.072*
C80.9350 (2)0.0879 (2)0.7438 (2)0.0949 (9)
H8A0.93860.16060.73940.142*
H8B1.00720.06220.77540.142*
H8C0.87340.06840.79110.142*
C90.43413 (16)0.00167 (16)0.20127 (15)0.0514 (5)
C100.4620 (2)−0.13703 (19)0.0762 (2)0.0795 (7)
H10A0.4463−0.09740.00790.095*
H10B0.3905−0.16940.09670.095*
C110.5496 (3)−0.2133 (3)0.0566 (3)0.1604 (18)
H11A0.6205−0.18050.03840.241*
H11B0.5236−0.2562−0.00530.241*
H11C0.5624−0.25360.12380.241*
C120.61631 (13)0.04467 (13)0.32414 (13)0.0373 (4)
H120.6308−0.02860.32520.045*
C130.48786 (14)0.06167 (13)0.29414 (14)0.0405 (4)
C140.42771 (14)0.13185 (13)0.34979 (14)0.0424 (4)
C150.58549 (14)0.15725 (13)0.49037 (14)0.0425 (4)
C160.65116 (13)0.08686 (12)0.44024 (13)0.0381 (4)
C170.61248 (18)0.21403 (17)0.59884 (16)0.0614 (6)
H17A0.63610.16690.65750.092*0.60 (2)
H17B0.54470.24990.62050.092*0.60 (2)
H17C0.67390.26150.58780.092*0.60 (2)
H17D0.60040.28540.58640.092*0.40 (2)
H17E0.69180.20230.62330.092*0.40 (2)
H17F0.56250.19070.65610.092*0.40 (2)
C180.30334 (15)0.16157 (17)0.32620 (17)0.0584 (5)
H18A0.25960.14660.39130.088*0.59 (2)
H18B0.27210.12420.26200.088*0.59 (2)
H18C0.29890.23300.31020.088*0.59 (2)
H18D0.29410.18920.25110.088*0.41 (2)
H18E0.28160.21160.38040.088*0.41 (2)
H18F0.25480.10280.33210.088*0.41 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0504 (9)0.1327 (15)0.0895 (11)0.0078 (9)−0.0249 (9)−0.0411 (11)
O20.0560 (8)0.0669 (9)0.0552 (8)−0.0058 (7)−0.0078 (7)−0.0177 (7)
O30.0388 (7)0.0738 (9)0.0480 (7)0.0130 (6)−0.0106 (6)−0.0075 (6)
O40.0505 (8)0.0732 (9)0.0643 (9)0.0217 (7)−0.0080 (7)−0.0164 (7)
N10.0482 (10)0.0823 (13)0.0547 (10)−0.0138 (9)0.0065 (8)0.0115 (9)
N20.0358 (8)0.0622 (10)0.0436 (9)0.0121 (7)−0.0003 (7)−0.0067 (8)
C10.0689 (14)0.0555 (12)0.0637 (13)−0.0175 (11)0.0050 (11)0.0075 (10)
C20.0552 (12)0.0487 (11)0.0551 (11)−0.0048 (9)0.0113 (9)−0.0026 (9)
C30.0289 (8)0.0479 (10)0.0355 (9)−0.0015 (7)−0.0038 (7)−0.0004 (7)
C40.0520 (11)0.0542 (12)0.0522 (11)0.0069 (9)0.0121 (9)0.0029 (9)
C50.0491 (12)0.0853 (17)0.0563 (13)0.0091 (11)0.0171 (10)0.0050 (11)
C60.0383 (10)0.0507 (10)0.0401 (10)0.0015 (8)0.0004 (8)0.0003 (8)
C70.0367 (10)0.0759 (14)0.0662 (13)0.0114 (10)−0.0129 (9)−0.0020 (11)
C80.0617 (15)0.144 (2)0.0762 (16)0.0252 (16)−0.0278 (13)−0.0237 (17)
C90.0433 (11)0.0666 (13)0.0441 (11)−0.0083 (9)0.0010 (9)−0.0025 (9)
C100.0852 (17)0.0833 (17)0.0684 (14)−0.0116 (14)−0.0149 (13)−0.0286 (13)
C110.172 (4)0.139 (3)0.164 (3)0.065 (3)−0.066 (3)−0.101 (3)
C120.0350 (9)0.0402 (9)0.0366 (9)−0.0001 (7)0.0009 (7)0.0014 (7)
C130.0342 (9)0.0510 (10)0.0362 (9)−0.0058 (8)0.0011 (7)0.0040 (8)
C140.0329 (9)0.0555 (11)0.0386 (9)−0.0012 (8)0.0011 (7)0.0066 (8)
C150.0363 (9)0.0543 (11)0.0366 (9)0.0025 (8)−0.0002 (8)0.0015 (8)
C160.0324 (9)0.0443 (10)0.0374 (9)0.0013 (7)−0.0002 (7)0.0008 (7)
C170.0537 (12)0.0806 (14)0.0493 (11)0.0159 (10)−0.0048 (9)−0.0170 (10)
C180.0339 (10)0.0825 (14)0.0586 (12)0.0053 (9)−0.0019 (9)0.0038 (11)

Geometric parameters (Å, °)

O1—C91.207 (2)C9—C131.465 (2)
O2—C91.342 (2)C10—C111.452 (4)
O2—C101.449 (2)C10—H10A0.9700
O3—C61.339 (2)C10—H10B0.9700
O3—C71.458 (2)C11—H11A0.9600
O4—C61.211 (2)C11—H11B0.9600
N1—C51.324 (3)C11—H11C0.9600
N1—C11.333 (3)C12—C161.515 (2)
N2—C141.377 (2)C12—C131.526 (2)
N2—C151.381 (2)C12—H120.9800
N2—H2N0.86 (2)C13—C141.346 (2)
C1—C21.373 (3)C14—C181.503 (2)
C1—H10.9300C15—C161.352 (2)
C2—C31.371 (2)C15—C171.503 (2)
C2—H20.9300C17—H17A0.9600
C3—C41.381 (2)C17—H17B0.9600
C3—C121.527 (2)C17—H17C0.9600
C4—C51.382 (3)C17—H17D0.9600
C4—H40.9300C17—H17E0.9600
C5—H50.9300C17—H17F0.9600
C6—C161.470 (2)C18—H18A0.9600
C7—C81.467 (3)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C18—H18D0.9600
C8—H8A0.9600C18—H18E0.9600
C8—H8B0.9600C18—H18F0.9600
C8—H8C0.9600
C9—O2—C10116.92 (16)H11A—C11—H11B109.5
C6—O3—C7116.02 (14)C10—C11—H11C109.5
C5—N1—C1115.87 (17)H11A—C11—H11C109.5
C14—N2—C15123.55 (16)H11B—C11—H11C109.5
C14—N2—H2N118.7 (13)C16—C12—C13111.71 (13)
C15—N2—H2N116.8 (13)C16—C12—C3110.18 (13)
N1—C1—C2123.51 (19)C13—C12—C3110.37 (13)
N1—C1—H1118.2C16—C12—H12108.2
C2—C1—H1118.2C13—C12—H12108.2
C3—C2—C1120.68 (18)C3—C12—H12108.2
C3—C2—H2119.7C14—C13—C9121.67 (16)
C1—C2—H2119.7C14—C13—C12120.43 (15)
C2—C3—C4116.16 (16)C9—C13—C12117.87 (15)
C2—C3—C12121.52 (15)C13—C14—N2120.11 (15)
C4—C3—C12122.32 (15)C13—C14—C18126.85 (16)
C3—C4—C5119.59 (18)N2—C14—C18113.03 (16)
C3—C4—H4120.2C16—C15—N2119.26 (15)
C5—C4—H4120.2C16—C15—C17128.02 (15)
N1—C5—C4124.17 (19)N2—C15—C17112.72 (15)
N1—C5—H5117.9C15—C16—C6125.97 (15)
C4—C5—H5117.9C15—C16—C12121.10 (14)
O4—C6—O3121.74 (15)C6—C16—C12112.88 (14)
O4—C6—C16122.14 (16)C15—C17—H17A109.5
O3—C6—C16116.11 (15)C15—C17—H17B109.5
O3—C7—C8107.81 (17)H17A—C17—H17B109.5
O3—C7—H7A110.1C15—C17—H17C109.5
C8—C7—H7A110.1H17A—C17—H17C109.5
O3—C7—H7B110.1H17B—C17—H17C109.5
C8—C7—H7B110.1C15—C17—H17D109.5
H7A—C7—H7B108.5C15—C17—H17E109.5
C7—C8—H8A109.5H17D—C17—H17E109.5
C7—C8—H8B109.5C15—C17—H17F109.5
H8A—C8—H8B109.5H17D—C17—H17F109.5
C7—C8—H8C109.5H17E—C17—H17F109.5
H8A—C8—H8C109.5C14—C18—H18A109.5
H8B—C8—H8C109.5C14—C18—H18B109.5
O1—C9—O2120.87 (17)H18A—C18—H18B109.5
O1—C9—C13127.63 (19)C14—C18—H18C109.5
O2—C9—C13111.50 (15)H18A—C18—H18C109.5
O2—C10—C11108.0 (2)H18B—C18—H18C109.5
O2—C10—H10A110.1C14—C18—H18D109.5
C11—C10—H10A110.1C14—C18—H18E109.5
O2—C10—H10B110.1H18D—C18—H18E109.5
C11—C10—H10B110.1C14—C18—H18F109.5
H10A—C10—H10B108.4H18D—C18—H18F109.5
C10—C11—H11A109.5H18E—C18—H18F109.5
C10—C11—H11B109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.13 (2)2.984 (2)171.8 (18)

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2336).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A83, 1110–1115. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography