PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1391.
Published online 2010 May 19. doi:  10.1107/S1600536810017563
PMCID: PMC2979453

Reinvestigation of 4-methyl­anilinium dihydrogen phosphite

Abstract

The crystal structure of the title compound, C7H10N+·H2PO3 , has been reported previously by Sabounchei & Naghipour [Asian J. Chem. (2003) [triangle], 15, 1677–1686]. A new look at this compound has revealed doubling of the unit cell. The asymmetric unit consists of two 4-methyl­anilinium cations and two dihydrogen phosphite anions. The crystal structure is built upon alternating layers of organic cations and dihydrogen phosphite anions stacked along c. The organic layer is stabilized by C—H(...)π interactions. Weak aromatic π–π stacking interactions with centroid–centroid distances of 4.6147 (12), 4.6917 (12), 4.6932 (13) and 4.8366 (13) Å are also observed in the structure. The dihydrogen phosphite anions are linked by O—H(...)O hydrogen bonds into chains running parallel to the a-axis direction. These chains are connected to the cation layer by N—H(...)O hydrogen bonds.

Related literature

For the previously reported structure determination of the title compound, see: Sabounchei & Naghipour (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1391-scheme1.jpg

Experimental

Crystal data

  • C7H10N+·H2PO3
  • M r = 189.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1391-efi1.jpg
  • a = 9.3053 (7) Å
  • b = 9.4087 (7) Å
  • c = 11.3432 (8) Å
  • α = 70.253 (7)°
  • β = 76.304 (6)°
  • γ = 82.771 (6)°
  • V = 906.99 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 120 K
  • 0.54 × 0.20 × 0.10 mm

Data collection

  • Oxford Diffraction XCalibur 2 with area-detector Sapphire 2 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.885, T max = 0.973
  • 11211 measured reflections
  • 3787 independent reflections
  • 1948 reflections with I > 3σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 0.94
  • 3787 reflections
  • 229 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: JANA2006 (Petříček et al., 2010 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: JANA2006.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017563/fk2019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017563/fk2019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Sciences (ASCR).

supplementary crystallographic information

Experimental

Crystals of the title compound were obtained unintentionally in an attempt to prepare a Ni based hybrid organic-inorganic phosphite. In fact, reactants NiCl2 (0.078 g, 5 mmol), H3PO3 (0.0834 g, 1 mmol) and four drops of p-Toluidine were added to 10 ml of distilled water. The solution was heated for 3 hours at 330 K and the resulting greenish solution was left at room temperature. After two weeks, colourless irregular shaped crystals deposited. They were filtered off and washed with a solution of ethanol–water (4:1 v/v). The chemical composition of the reported compound was confirmed by microprobe analysis.

Refinement

All the hydrogens were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practise hydrogens attached to C and N atoms were nevertheless kept in ideal positions during the refinement. The O—H distances were restrained to 0.82 Å with σ 0.01. The isotropic temperature parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Figures

Fig. 1.
: The molecular structure of C7H10N+ H2PO3-. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
: Crystal packing of title coumpound viewed along the b axis. Hydrogen bonds are displayed as dashed lines. Color code: Grey balls (C), blue balls (N), red balls (O), pink balls (P), black balls (H).

Crystal data

C7H10N+·H2PO3Z = 4
Mr = 189.15F(000) = 400
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.3053 (7) ÅCell parameters from 1617 reflections
b = 9.4087 (7) Åθ = 3.0–26.5°
c = 11.3432 (8) ŵ = 0.27 mm1
α = 70.253 (7)°T = 120 K
β = 76.304 (6)°Prism, colorless
γ = 82.771 (6)°0.54 × 0.20 × 0.10 mm
V = 906.99 (12) Å3

Data collection

Oxford Diffraction XCalibur 2 with area-detector Sapphire 2 diffractometer3787 independent reflections
Radiation source: X-ray tube1948 reflections with I > 3σ(I)
graphiteRint = 0.036
Detector resolution: 8.3438 pixels mm-1θmax = 26.6°, θmin = 3°
Rotation method data acquisition using ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −11→11
Tmin = 0.885, Tmax = 0.973l = −14→14
11211 measured reflections

Refinement

Refinement on F284 constraints
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 0.94(Δ/σ)max = 0.006
3787 reflectionsΔρmax = 0.18 e Å3
229 parametersΔρmin = −0.21 e Å3
2 restraints

Special details

Experimental. CrysAlis RED, Oxford Diffraction (2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.44268 (6)0.24716 (7)0.46676 (6)0.0165 (2)
P20.94726 (6)0.25421 (7)0.47260 (6)0.0167 (2)
O10.54591 (17)0.17576 (19)0.56371 (16)0.0298 (7)
O20.51328 (15)0.37070 (16)0.35039 (13)0.0195 (6)
O30.29515 (15)0.29375 (16)0.53675 (13)0.0195 (6)
O41.03762 (17)0.2061 (2)0.58040 (15)0.0308 (7)
O51.01622 (15)0.37753 (16)0.35577 (13)0.0184 (6)
O60.78923 (15)0.28969 (16)0.53163 (13)0.0190 (6)
N10.74334 (19)0.44279 (19)0.70739 (16)0.0171 (7)
N20.25053 (18)0.4549 (2)0.70792 (16)0.0168 (7)
C10.7462 (2)0.3513 (2)0.8403 (2)0.0159 (9)
C20.8748 (2)0.2693 (2)0.8666 (2)0.0194 (8)
C30.8833 (2)0.1901 (2)0.9927 (2)0.0203 (9)
C40.7635 (3)0.1912 (3)1.0925 (2)0.0194 (9)
C50.6343 (2)0.2725 (2)1.0629 (2)0.0206 (9)
C60.6246 (2)0.3533 (2)0.93645 (19)0.0179 (8)
C70.7744 (3)0.1095 (3)1.2295 (2)0.0330 (11)
C80.2503 (2)0.3567 (2)0.8389 (2)0.0144 (9)
C90.3142 (2)0.2119 (2)0.86021 (19)0.0173 (8)
C100.3151 (2)0.1208 (2)0.98476 (19)0.0187 (8)
C110.2530 (2)0.1712 (3)1.0889 (2)0.0193 (9)
C120.1901 (2)0.3180 (2)1.0644 (2)0.0193 (8)
C130.1881 (2)0.4110 (2)0.94022 (19)0.0190 (8)
C140.2534 (3)0.0697 (3)1.2231 (2)0.0309 (10)
H1o0.6230 (17)0.219 (3)0.549 (2)0.0358*
H4o1.1189 (15)0.242 (3)0.560 (2)0.037*
H1a0.7508150.3836020.6613680.0205*
H1b0.6603890.4968180.7048160.0205*
H1c0.8170880.5022280.6771380.0205*
H2a0.1637630.5008640.703990.0202*
H2b0.3171610.521580.6851080.0202*
H2c0.2707860.4008310.6566440.0202*
H20.9578850.2670150.7983430.0233*
H30.9731620.1337011.0111830.0244*
H50.5500380.2730931.1306280.0247*
H60.5347890.4091640.9169690.0215*
H7a0.8647170.0478131.2317630.0396*
H7b0.7738410.1818981.272310.0396*
H7c0.6915390.0467061.2717370.0396*
H90.357340.1750380.7896840.0207*
H100.35970.0203170.9997630.0225*
H120.1473490.3554241.1346950.0232*
H130.1441880.5118530.9245730.0228*
H14a0.2408840.1299491.2787160.0371*
H14b0.1736470.0025591.2512930.0371*
H14c0.3458920.0118131.2253660.0371*
H1p0.415 (2)0.132 (2)0.4315 (18)0.0198*
H2p0.940 (2)0.131 (2)0.4421 (18)0.02*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0147 (3)0.0167 (3)0.0165 (3)−0.0020 (3)−0.0049 (3)−0.0019 (3)
P20.0155 (3)0.0169 (3)0.0157 (3)−0.0013 (3)−0.0045 (3)−0.0017 (3)
O10.0185 (9)0.0311 (11)0.0295 (10)−0.0094 (8)−0.0128 (8)0.0118 (8)
O20.0173 (8)0.0213 (9)0.0168 (9)−0.0009 (7)−0.0046 (7)−0.0014 (7)
O30.0157 (8)0.0246 (9)0.0170 (8)−0.0036 (7)−0.0025 (7)−0.0048 (7)
O40.0165 (9)0.0450 (12)0.0203 (9)−0.0103 (8)−0.0072 (8)0.0086 (9)
O50.0173 (8)0.0204 (9)0.0144 (8)−0.0019 (7)−0.0037 (7)−0.0011 (7)
O60.0148 (8)0.0219 (9)0.0178 (8)−0.0034 (7)−0.0043 (7)−0.0017 (7)
N10.0156 (10)0.0174 (10)0.0163 (10)−0.0015 (9)−0.0038 (8)−0.0024 (9)
N20.0153 (10)0.0174 (10)0.0154 (10)−0.0007 (9)−0.0033 (8)−0.0021 (8)
C10.0195 (13)0.0138 (13)0.0145 (12)−0.0040 (11)−0.0057 (10)−0.0019 (11)
C20.0164 (12)0.0218 (12)0.0198 (12)−0.0034 (10)−0.0022 (9)−0.0064 (10)
C30.0198 (12)0.0158 (12)0.0269 (13)0.0013 (10)−0.0118 (10)−0.0048 (10)
C40.0260 (13)0.0152 (12)0.0193 (13)−0.0042 (10)−0.0097 (11)−0.0039 (10)
C50.0223 (13)0.0227 (12)0.0160 (12)−0.0044 (10)0.0001 (10)−0.0065 (10)
C60.0164 (11)0.0169 (11)0.0214 (12)−0.0007 (10)−0.0071 (9)−0.0051 (10)
C70.0473 (17)0.0282 (15)0.0243 (14)0.0008 (13)−0.0142 (13)−0.0059 (12)
C80.0131 (12)0.0159 (13)0.0130 (12)−0.0035 (10)−0.0042 (10)−0.0011 (10)
C90.0175 (12)0.0193 (12)0.0166 (11)−0.0014 (10)−0.0047 (9)−0.0067 (9)
C100.0181 (12)0.0131 (11)0.0243 (12)0.0006 (9)−0.0084 (10)−0.0028 (10)
C110.0185 (12)0.0208 (13)0.0174 (12)−0.0078 (11)−0.0059 (10)−0.0005 (10)
C120.0217 (12)0.0230 (13)0.0149 (11)−0.0057 (10)−0.0029 (9)−0.0074 (10)
C130.0190 (12)0.0132 (11)0.0245 (12)−0.0019 (9)−0.0050 (10)−0.0050 (10)
C140.0360 (16)0.0311 (15)0.0209 (13)−0.0043 (12)−0.0088 (12)0.0006 (12)

Geometric parameters (Å, °)

P1—O11.5563 (18)C3—H30.96
P1—O21.5066 (13)C4—C51.389 (3)
P1—O31.5082 (14)C4—C71.504 (3)
P1—H1p1.35 (2)C5—C61.397 (3)
P2—O41.5570 (19)C5—H50.96
P2—O51.5033 (13)C6—H60.96
P2—O61.5111 (14)C7—H7a0.96
P2—H2p1.33 (2)C7—H7b0.96
O1—H1o0.82 (2)C7—H7c0.96
O4—H4o0.817 (17)C8—C91.382 (3)
N1—C11.467 (3)C8—C131.387 (3)
N1—H1a0.87C9—C101.384 (3)
N1—H1b0.87C9—H90.96
N1—H1c0.87C10—C111.393 (3)
N2—C81.461 (3)C10—H100.96
N2—H2a0.87C11—C121.394 (3)
N2—H2b0.87C11—C141.500 (3)
N2—H2c0.87C12—C131.388 (3)
C1—C21.377 (3)C12—H120.96
C1—C61.377 (3)C13—H130.96
C2—C31.387 (3)C14—H14a0.96
C2—H20.96C14—H14b0.96
C3—C41.390 (3)C14—H14c0.96
O1—P1—O2112.94 (9)C5—C4—C7120.72 (19)
O1—P1—O3109.03 (9)C4—C5—C6121.28 (19)
O1—P1—H1p105.0 (8)C4—C5—H5119.3623
O2—P1—O3114.33 (8)C6—C5—H5119.3618
O2—P1—H1p109.7 (7)C1—C6—C5118.73 (19)
O3—P1—H1p105.2 (8)C1—C6—H6120.6345
O4—P2—O5113.03 (9)C5—C6—H6120.6348
O4—P2—O6107.47 (9)C4—C7—H7a109.4716
O4—P2—H2p106.5 (8)C4—C7—H7b109.4709
O5—P2—O6114.87 (8)C4—C7—H7c109.4717
O5—P2—H2p109.9 (7)H7a—C7—H7b109.4704
O6—P2—H2p104.4 (8)H7a—C7—H7c109.4711
P1—O1—H1o115.9 (15)H7b—C7—H7c109.4716
P2—O4—H4o114.8 (16)N2—C8—C9119.6 (2)
C1—N1—H1a109.4712N2—C8—C13119.48 (18)
C1—N1—H1b109.4716C9—C8—C13120.91 (19)
C1—N1—H1c109.4717C8—C9—C10119.0 (2)
H1a—N1—H1b109.4701C8—C9—H9120.5149
H1a—N1—H1c109.4712C10—C9—H9120.5151
H1b—N1—H1c109.4716C9—C10—C11121.74 (19)
C8—N2—H2a109.471C9—C10—H10119.1322
C8—N2—H2b109.4707C11—C10—H10119.1326
C8—N2—H2c109.4708C10—C11—C12118.00 (19)
H2a—N2—H2b109.4716C10—C11—C14120.8 (2)
H2a—N2—H2c109.4717C12—C11—C14121.2 (2)
H2b—N2—H2c109.4715C11—C12—C13121.1 (2)
N1—C1—C2118.50 (17)C11—C12—H12119.4449
N1—C1—C6120.20 (18)C13—C12—H12119.4445
C2—C1—C6121.24 (19)C8—C13—C12119.27 (19)
C1—C2—C3119.45 (19)C8—C13—H13120.366
C1—C2—H2120.2763C12—C13—H13120.3658
C3—C2—H2120.2765C11—C14—H14a109.4716
C2—C3—C4121.0 (2)C11—C14—H14b109.4705
C2—C3—H3119.5091C11—C14—H14c109.471
C4—C3—H3119.5082H14a—C14—H14b109.4714
C3—C4—C5118.3 (2)H14a—C14—H14c109.4717
C3—C4—C7121.0 (2)H14b—C14—H14c109.4711
N1—C1—C2—C3175.68 (18)N2—C8—C9—C10179.07 (18)
C6—C1—C2—C3−1.6 (3)C13—C8—C9—C100.2 (3)
N1—C1—C6—C5−175.96 (18)N2—C8—C13—C12−179.06 (18)
C2—C1—C6—C51.3 (3)C9—C8—C13—C12−0.2 (3)
C1—C2—C3—C40.7 (3)C8—C9—C10—C110.2 (3)
C2—C3—C4—C50.6 (4)C9—C10—C11—C12−0.5 (3)
C2—C3—C4—C7−178.0 (2)C9—C10—C11—C14179.1 (2)
C3—C4—C5—C6−0.9 (4)C10—C11—C12—C130.5 (3)
C7—C4—C5—C6177.7 (2)C14—C11—C12—C13−179.1 (2)
C4—C5—C6—C10.0 (3)C11—C12—C13—C8−0.2 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1a···O60.871.902.760 (2)167
N1—H1b···O2i0.872.002.850 (2)165
N1—H1c···O5ii0.871.932.784 (2)169
O1—H1o···O60.82 (2)1.703 (19)2.523 (2)173 (3)
N2—H2a···O5i0.872.032.875 (2)165
N2—H2b···O2i0.871.872.729 (2)168
N2—H2c···O30.871.912.773 (2)173
O4—H4o···O3iii0.818 (18)1.704 (17)2.516 (2)171 (2)
C3—H3···Cg2iii0.962.873.502 (2)125
C6—H6···Cg20.962.973.589 (2)123
C10—H10···Cg1iv0.962.933.655 (2)133

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2019).

References

  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Oxford Diffraction (2006). CrysAlis CCD Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Petříček, V., Dušek, M. & Palatinus, L. (2010). JANA2006 Institute of Physics, Praha, Czech Republic.
  • Sabounchei, S. J. & Naghipour, A. (2003). Asian J. Chem.15, 1677–1686.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography