PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1426.
Published online 2010 May 22. doi:  10.1107/S1600536810018027
PMCID: PMC2979451

1,4-Bis(4-chloro­phen­yl)-2-hydroxy­butane-1,4-dione

Abstract

In the title compound, C16H12Cl2O3, the benzene rings form a dihedral angle of 2.0 (3)°. Within the central O=C—CH2C(H)OH—C=O unit, the carbonyl groups are coplanar and lie to opposite sides [O—C(...)C—O = −170.1 (6)°]. In the crystal, inter­molecular O—H(...)O hydrogen bonds formed between the hydr­oxy groups lead to a supra­molecular chain along the c axis. In addition, the crystal packing features some very weak C—H(...)π inter­actions.

Related literature

For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973 [triangle]); Hassner (1991 [triangle]); Ohno et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1426-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2O3
  • M r = 323.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1426-efi1.jpg
  • a = 34.800 (8) Å
  • b = 7.4221 (14) Å
  • c = 5.6535 (13) Å
  • β = 95.925 (2)°
  • V = 1452.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 273 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.947, T max = 0.964
  • 3531 measured reflections
  • 1256 independent reflections
  • 998 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.163
  • S = 1.05
  • 1256 reflections
  • 190 parameters
  • 9 restraints
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018027/tk2670sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018027/tk2670Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Hassner, 1991). For this reason, a number of methods for their synthesis have been developed and applied (Ellison, 1973; Ohno et al., 2001).

In the title compound, Fig. 1, the benzene rings form a dihedral angle of 2.0 (3) °. Intermolecular O2—H2A···O2 hydrogen bonds lead to the formation of a supramolecular chain along the c axis (Table 1, Fig. 2). In addition, the crystal packing is stabilized by intermolecular C—H···π interactions (Table 1) and short Cl···Cli contacts (3.434 (3) Å for i: 1/2+x, 1/2-y, -1/2+z).

Experimental

The title compound was obtained as a by-product in the coupling reaction between 4-ClC6H4COCH2Br and benzaldehyde, a reaction which is being studied in our laboratory. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 20 days.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.95–0.99 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O) and Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, 1009 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing atom labels and 50% probability displacement ellipsoids.
Fig. 2.
The packing diagram for the title compound, viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines).

Crystal data

C16H12Cl2O3F(000) = 664
Mr = 323.16Dx = 1.478 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1044 reflections
a = 34.800 (8) Åθ = 2.4–24.4°
b = 7.4221 (14) ŵ = 0.45 mm1
c = 5.6535 (13) ÅT = 273 K
β = 95.925 (2)°Column, colourless
V = 1452.4 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1256 independent reflections
Radiation source: fine-focus sealed tube998 reflections with I > 2σ(I)
graphiteRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −38→40
Tmin = 0.947, Tmax = 0.964k = −7→8
3531 measured reflectionsl = −6→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.1063P)2 + 0.4654P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1256 reflectionsΔρmax = 0.40 e Å3
190 parametersΔρmin = −0.21 e Å3
9 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.04214 (18)0.1713 (8)0.3400 (11)0.0369 (15)
H11.03560.12040.48090.044*
C21.0810 (2)0.1845 (10)0.2991 (14)0.053 (2)
H21.10020.13850.40890.063*
C31.0905 (2)0.2672 (9)0.0921 (14)0.049 (2)
C41.0605 (2)0.3249 (10)−0.0726 (13)0.049 (2)
H41.06640.3745−0.21540.058*
C51.0234 (2)0.3116 (8)−0.0327 (12)0.0403 (16)
H51.00430.3556−0.14480.048*
C61.0133 (2)0.2332 (8)0.1732 (12)0.0357 (16)
C70.9724 (2)0.2035 (8)0.2253 (12)0.0374 (16)
C80.9403 (2)0.2685 (8)0.0412 (13)0.0383 (14)
H80.94430.2140−0.11210.046*
C90.9007 (2)0.2137 (9)0.1027 (12)0.0412 (15)
H9A0.89990.08390.12100.049*
H9B0.89610.26780.25330.049*
C100.8693 (2)0.2712 (9)−0.0860 (13)0.0454 (18)
C110.8287 (2)0.2621 (8)−0.0279 (12)0.0362 (16)
C120.8185 (2)0.1854 (9)0.1838 (11)0.0444 (18)
H120.83770.14320.29640.053*
C130.7794 (2)0.1712 (10)0.2287 (12)0.0465 (19)
H130.77250.11460.36490.056*
C140.7524 (2)0.2427 (10)0.0672 (14)0.053 (2)
C150.7606 (2)0.3157 (9)−0.1456 (15)0.0489 (18)
H150.74090.3558−0.25640.059*
C160.7982 (2)0.3280 (9)−0.1908 (12)0.0473 (18)
H160.80400.3809−0.33190.057*
Cl11.13745 (6)0.2822 (4)0.0298 (3)0.0922 (9)
Cl20.70386 (6)0.2245 (4)0.1208 (4)0.0948 (10)
O10.96490 (15)0.1328 (6)0.4095 (9)0.0515 (12)
O20.94303 (14)0.4587 (5)0.0178 (8)0.0501 (10)
H2A0.94340.50580.14920.075*
O30.87583 (16)0.3179 (10)−0.2824 (10)0.084 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.043 (4)0.037 (3)0.030 (3)−0.007 (3)0.002 (3)−0.001 (3)
C20.066 (5)0.056 (5)0.035 (4)0.005 (4)0.000 (4)0.001 (3)
C30.060 (6)0.047 (4)0.040 (4)−0.008 (3)0.000 (4)−0.012 (3)
C40.057 (6)0.053 (4)0.037 (4)−0.006 (3)0.008 (4)−0.001 (3)
C50.047 (4)0.033 (3)0.040 (4)−0.009 (3)0.001 (3)0.002 (3)
C60.042 (4)0.033 (3)0.033 (4)0.009 (3)0.008 (3)−0.001 (3)
C70.057 (4)0.026 (3)0.030 (4)0.006 (3)0.009 (3)−0.001 (3)
C80.048 (3)0.033 (3)0.033 (3)0.011 (2)0.000 (3)0.002 (3)
C90.047 (3)0.047 (4)0.031 (3)−0.007 (3)0.008 (3)0.003 (3)
C100.043 (4)0.057 (4)0.037 (4)0.006 (3)0.008 (3)0.003 (3)
C110.047 (4)0.029 (3)0.032 (4)−0.010 (2)0.003 (3)−0.004 (3)
C120.053 (5)0.055 (4)0.026 (3)0.013 (3)0.004 (3)0.006 (3)
C130.054 (5)0.058 (4)0.029 (3)−0.017 (4)0.013 (3)0.005 (3)
C140.034 (4)0.069 (5)0.058 (6)−0.011 (3)0.014 (4)−0.004 (4)
C150.027 (3)0.055 (4)0.062 (5)−0.008 (3)−0.011 (3)0.003 (4)
C160.061 (5)0.042 (3)0.037 (4)0.001 (3)−0.002 (4)0.004 (3)
Cl10.0472 (14)0.147 (3)0.0842 (18)−0.0177 (14)0.0152 (13)0.0093 (17)
Cl20.0469 (15)0.150 (3)0.089 (2)−0.0122 (14)0.0178 (13)0.0072 (17)
O10.052 (3)0.057 (3)0.047 (3)0.002 (2)0.012 (2)0.019 (2)
O20.064 (3)0.039 (2)0.048 (2)0.0037 (19)0.0072 (18)0.0049 (19)
O30.048 (3)0.172 (6)0.033 (3)0.010 (3)0.011 (2)0.033 (3)

Geometric parameters (Å, °)

C1—C61.384 (10)C9—C101.507 (11)
C1—C21.398 (10)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.391 (12)C10—O31.206 (9)
C2—H20.9300C10—C111.485 (10)
C3—C41.393 (11)C11—C121.404 (9)
C3—Cl11.711 (8)C11—C161.419 (10)
C4—C51.334 (9)C12—C131.413 (9)
C4—H40.9300C12—H120.9300
C5—C61.380 (9)C13—C141.349 (11)
C5—H50.9300C13—H130.9300
C6—C71.499 (10)C14—C151.376 (12)
C7—O11.218 (8)C14—Cl21.753 (8)
C7—C81.525 (10)C15—C161.361 (10)
C8—O21.422 (7)C15—H150.9300
C8—C91.509 (7)C16—H160.9300
C8—H80.9800O2—H2A0.8200
C6—C1—C2120.7 (6)C10—C9—H9A109.3
C6—C1—H1119.7C8—C9—H9A109.3
C2—C1—H1119.7C10—C9—H9B109.3
C3—C2—C1119.2 (7)C8—C9—H9B109.3
C3—C2—H2120.4H9A—C9—H9B107.9
C1—C2—H2120.4O3—C10—C11119.3 (6)
C2—C3—C4118.1 (8)O3—C10—C9122.8 (6)
C2—C3—Cl1121.1 (6)C11—C10—C9117.8 (6)
C4—C3—Cl1120.6 (6)C12—C11—C16117.0 (7)
C5—C4—C3122.3 (7)C12—C11—C10122.6 (6)
C5—C4—H4118.8C16—C11—C10120.4 (6)
C3—C4—H4118.8C11—C12—C13121.2 (6)
C4—C5—C6120.7 (7)C11—C12—H12119.4
C4—C5—H5119.7C13—C12—H12119.4
C6—C5—H5119.7C14—C13—C12117.7 (6)
C5—C6—C1118.9 (7)C14—C13—H13121.2
C5—C6—C7124.0 (6)C12—C13—H13121.2
C1—C6—C7117.1 (6)C13—C14—C15123.6 (7)
O1—C7—C6121.4 (6)C13—C14—Cl2117.9 (6)
O1—C7—C8120.9 (7)C15—C14—Cl2118.2 (6)
C6—C7—C8117.6 (6)C16—C15—C14118.8 (7)
O2—C8—C9111.2 (5)C16—C15—H15120.6
O2—C8—C7109.0 (5)C14—C15—H15120.6
C9—C8—C7112.3 (5)C15—C16—C11121.6 (7)
O2—C8—H8108.1C15—C16—H16119.2
C9—C8—H8108.1C11—C16—H16119.2
C7—C8—H8108.1C8—O2—H2A109.5
C10—C9—C8111.8 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.822.102.894 (6)163
C1—H1···Cg1ii0.932.893.507 (6)125
C4—H4···Cg1iii0.932.973.600 (6)126
C13—H13···Cg2ii0.932.883.517 (6)127
C16—H16···Cg2iii0.932.903.544 (6)128

Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, −y, z+1/2; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2670).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ellison, R. A. (1973). Synthesis, pp. 397–412.
  • Hassner, A. (1991). Comprehensive Organic Synthesis, Vol. 1, edited by B. M. Trost, pp. 541–577. Oxford: Pergamon.
  • Ohno, T., Sakai, M., Ishino, Y., Shibata, T., Maekawa, H. & Nishiguchi, I. (2001). Org. Lett.3, 3439–3442. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography