PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m629–m630.
Published online 2010 May 8. doi:  10.1107/S1600536810016314
PMCID: PMC2979448

Penta­carbon­yl(imidazolidine-2-thione-κS)tungsten(0)

Abstract

In the title complex, [W(C3H6N2S)(CO)5], the W atom displays an octa­hedral coordination with five CO mol­ecules and an imidazolidine-2-thione mol­ecule. The W(CO)5 unit is coordinated by the cyclic thione ligand through a W—S dative bond. The W—S and C—S bond lengths are 2.599 (2) and 1.711 (9) Å, respectively. This last distance is significantly longer than that of free cyclic thio­ureas. The geometry of the title compound suggests sp 3-hybridization of the S atom caused by the greatly polarized linkage W—S—C bond angle, which is close to tetra­hedral [109.50 (3)°]. In the crystal packing, N—H(...)O and N—H(...)S hydrogen-bonding inter­actions stabilize the structure and build up chains parallel to [101].

Related literature

For the properties of imidazolinethio­nes or cyclic thio­ureas, see: Gok & Çetinkaya (2004 [triangle]); Kuhn & Kratz (1993 [triangle]); Reglinski et al. (1999 [triangle]); Crossley et al. (2006 [triangle]); Saito et al. (2007 [triangle]); Raper et al. (1983 [triangle]). For hydrogen-bond motifs, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]); Beheshti et al. (2007 [triangle]). For related structures, see: Kuhn et al. (1998 [triangle]); Mak et al. (1985) [triangle]; Valdés-Martinez et al. (1988 [triangle], 1996 [triangle]); Pasynsky et al. (2007 [triangle]); Darensbourg et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m629-scheme1.jpg

Experimental

Crystal data

  • [W(C3H6N2S)(CO)5]
  • M r = 426.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m629-efi1.jpg
  • a = 6.652 (1) Å
  • b = 7.8120 (12) Å
  • c = 11.6240 (15) Å
  • α = 84.071 (5)°
  • β = 85.042 (6)°
  • γ = 87.704 (7)°
  • V = 598.27 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 9.84 mm−1
  • T = 293 K
  • 0.08 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: refined from ΔF (cubic fit to sinθ/λ, 24 parameters; Parkin et al., 1995 [triangle]) T min = 0.526, T max = 0.867
  • 2623 measured reflections
  • 2623 independent reflections
  • 2324 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.106
  • S = 1.10
  • 2623 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 1.44 e Å−3
  • Δρmin = −1.58 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST97 (Nardelli, 1995 [triangle]) and Mercury (Macrae et al., 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016314/dn2555sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016314/dn2555Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique for financial support.

supplementary crystallographic information

Comment

Imidazolinethiones or cyclic thioureas are an important classe of compounds with a wide variety of applications (Gok & çetinkaya, 2004; Kuhn & Kratz, 1993). The chemical interests of these cyclic thioureas lie in their face capping character, in their structural analogy with thiolated nucleosides and in their application to enzyme models (Reglinski et al., 1999; Crossley et al., 2006; Saito et al., 2007). The diverse properties of the cyclic thioureas have been attributed to the coordination ability of the heterocyclic RN—C(S)—NR' thioamide group, as a monodentate ligand, to both metallic and non-metallic elements, leading to stable electron donor–acceptor complexes (Raper et al., 1983). Our research has been focused for some time on coordination compounds of sulfur containing ligands with carbonyl metals. The structure of the Imidazolidine-2-Thione-W(CO)5 complex (I), was carried out and results are presented here.

The tungsten atom displays octahedral geometry with five CO and the Imidazolidine-2-Thione molecules (Fig. 1). The bond distances and angles in (I) are within normal range and are comparable to the corresponding values observed in similar structures (Saito et al., 2007; Mak et al., 1985; Valdés-Martinez et al., 1988; Valdés-Martinez et al., 1996; Pasynsky et al., 2007; Darensbourg et al., 1999). Such geometry of (I) suggests sp3 hybridization of the sulfur atom caused by the greatly polarized M—S—C linkage. Indeed, the W—S—C bond angles is 109.50 (3)° and is close to a tetrahedral angle. As expected, the C=S bond is elongated and the C(6)—S(1) interatomic distance is 1.711 (9) Å and it is significantly longer than that of free cyclic thiourea, 1.690 (2) Å (Mak et al., 1985; Kuhn et al., 1998). The bond length between the metal and trans-carbonyl carbon atoms is 1.970 (10) Å. This is substantially shorter than the metal cis carbonyl bonds. The average of the separations between the metal and cis carbonyls is 2.049 Å.

Intermolecular N—H···O hydrogen bonds generate R22(14) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) resulting in the formation of a pseudo dimer. Further N-H···O [R22(14)] and N—H···S [R22(8)] interactions link these dimers forming chains parallel to the [1 0 1] direction (Table 1, Fig.2). The N-H···S hydrogen bond distance is in the same range of there observed in the heterocyclic thione complexes (Beheshti et al., 2007).

Experimental

A solution of W(CO)6 (527 mg, 1.5 mmol) and Imidazolidine-2-thione (153 mg, 1.5 mmol) in 40 ml of dry THF was irradiated for 2 h with vigorous stirring. The excess of W(CO)6 was mouved by filtration and the solvent was evaporated under reduced pressure. The residue was recrystallised from THF/hexane (1:5 ratio). Bright yellow crystals were washed three times with portions of hexane, and dried under vacuum. Yield:(34%).

Refinement

H atoms were positined geometrically, using a riding model with C—H = 0.96 Å (Uiso(H) = 1.5) (including free rotation about C—C and C—N bond) for methyl groups and with C—H = 0.93 and 0.97 Å (1.2 for aromatic and methylene groups) times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of (I) showing the chain formed by N-H···O and N-H···S hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: ...

Crystal data

[W(C3H6N2S)(CO)5]Z = 2
Mr = 426.06F(000) = 396
Triclinic, P1Dx = 2.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.652 (1) ÅCell parameters from 9229 reflections
b = 7.8120 (12) Åθ = 1.0–27.1°
c = 11.6240 (15) ŵ = 9.84 mm1
α = 84.071 (5)°T = 293 K
β = 85.042 (6)°Prism, yellow
γ = 87.704 (7)°0.08 × 0.06 × 0.04 mm
V = 598.27 (15) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer2623 independent reflections
Radiation source: fine-focus sealed tube2324 reflections with I > 2σ(I)
graphiteRint = 0.0000
Detector resolution: 8.192 pixels mm-1θmax = 27.2°, θmin = 3.0°
ω scanh = −8→8
Absorption correction: part of the refinement model (ΔF) (cubic fit to sinθ/λ, 24 parameters; Parkin et al., 1995)k = −9→10
Tmin = 0.526, Tmax = 0.867l = 0→14
2623 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0555P)2 + 0.8559P] where P = (Fo2 + 2Fc2)/3
2623 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = −1.58 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W10.04631 (4)0.22504 (4)0.75225 (2)0.05469 (14)
S10.1747 (3)0.4882 (3)0.61423 (18)0.0631 (5)
O1−0.0857 (14)−0.1215 (10)0.8903 (7)0.093 (2)
O20.4366 (12)0.1909 (13)0.8942 (7)0.097 (2)
O3−0.3638 (10)0.2376 (10)0.6320 (6)0.0757 (17)
O40.2472 (17)0.0053 (12)0.5555 (8)0.106 (3)
O5−0.1845 (13)0.4202 (12)0.9529 (6)0.088 (2)
N10.3318 (15)0.6250 (13)0.7912 (7)0.088 (3)
H10.23600.58820.84090.106*
N20.5082 (13)0.6600 (11)0.6281 (7)0.075 (2)
H20.54340.65430.55560.090*
C1−0.0386 (15)0.0069 (13)0.8400 (8)0.071 (2)
C20.3013 (13)0.2079 (12)0.8406 (7)0.0634 (19)
C3−0.2170 (11)0.2399 (10)0.6719 (7)0.0533 (15)
C40.1775 (14)0.0833 (12)0.6262 (8)0.0626 (19)
C5−0.0988 (13)0.3583 (12)0.8803 (8)0.0624 (19)
C60.3454 (12)0.5942 (10)0.6806 (7)0.0587 (17)
C70.4921 (17)0.7255 (14)0.8196 (9)0.077 (2)
H30.56450.66600.88160.093*
H40.44200.83650.84220.093*
C80.6264 (17)0.7454 (15)0.7050 (9)0.079 (3)
H50.64470.86560.67730.094*
H60.75740.68840.71300.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.0489 (2)0.0648 (2)0.0505 (2)−0.00673 (13)−0.00158 (12)−0.00630 (13)
S10.0636 (11)0.0727 (12)0.0541 (10)−0.0159 (9)−0.0067 (8)−0.0045 (9)
O10.103 (6)0.088 (5)0.085 (5)−0.032 (4)−0.016 (4)0.016 (4)
O20.069 (4)0.141 (7)0.085 (5)0.002 (4)−0.029 (4)−0.010 (5)
O30.057 (3)0.099 (5)0.074 (4)−0.006 (3)−0.011 (3)−0.012 (3)
O40.126 (7)0.106 (6)0.086 (5)0.018 (5)0.010 (5)−0.040 (5)
O50.089 (5)0.109 (5)0.066 (4)0.010 (4)0.010 (4)−0.033 (4)
N10.088 (6)0.119 (7)0.063 (4)−0.038 (5)0.005 (4)−0.024 (4)
N20.078 (5)0.090 (5)0.059 (4)−0.030 (4)0.002 (4)−0.009 (4)
C10.070 (5)0.080 (6)0.068 (5)−0.013 (4)−0.020 (4)−0.010 (4)
C20.057 (4)0.079 (5)0.054 (4)−0.006 (4)0.001 (3)−0.006 (4)
C30.042 (3)0.064 (4)0.055 (4)−0.006 (3)−0.004 (3)−0.007 (3)
C40.059 (4)0.070 (5)0.060 (4)−0.006 (4)−0.004 (4)−0.009 (4)
C50.054 (4)0.077 (5)0.057 (4)−0.012 (4)−0.012 (3)−0.001 (4)
C60.061 (4)0.059 (4)0.056 (4)−0.004 (3)−0.002 (3)−0.006 (3)
C70.080 (6)0.079 (6)0.078 (6)−0.008 (5)−0.012 (5)−0.022 (5)
C80.077 (6)0.085 (6)0.077 (6)−0.031 (5)−0.003 (5)−0.012 (5)

Geometric parameters (Å, °)

W1—C11.970 (10)N1—C61.327 (11)
W1—C42.042 (9)N1—C71.430 (13)
W1—C32.049 (7)N1—H10.8598
W1—C22.050 (9)N2—C61.294 (11)
W1—C52.055 (10)N2—C81.465 (12)
W1—S12.599 (2)N2—H20.8601
S1—C61.711 (9)C7—C81.536 (17)
O1—C11.148 (11)C7—H30.9700
O2—C21.134 (12)C7—H40.9700
O3—C31.118 (10)C8—H50.9700
O4—C41.130 (12)C8—H60.9700
O5—C51.118 (12)
C1—W1—C487.8 (4)C8—N2—H2123.5
C1—W1—C389.7 (3)O1—C1—W1178.9 (10)
C4—W1—C389.5 (3)O2—C2—W1175.7 (9)
C1—W1—C288.5 (4)O3—C3—W1175.3 (8)
C4—W1—C292.6 (4)O4—C4—W1178.8 (9)
C3—W1—C2177.1 (3)O5—C5—W1175.0 (9)
C1—W1—C589.7 (4)N2—C6—N1109.4 (8)
C4—W1—C5176.8 (3)N2—C6—S1124.2 (7)
C3—W1—C588.5 (3)N1—C6—S1126.3 (7)
C2—W1—C589.3 (3)N1—C7—C8102.3 (8)
C1—W1—S1172.4 (3)N1—C7—H3111.3
C4—W1—S184.6 (3)C8—C7—H3111.3
C3—W1—S189.4 (2)N1—C7—H4111.3
C2—W1—S192.8 (3)C8—C7—H4111.3
C5—W1—S197.8 (3)H3—C7—H4109.2
C6—S1—W1109.5 (3)N2—C8—C7101.7 (8)
C6—N1—C7113.4 (8)N2—C8—H5111.4
C6—N1—H1123.3C7—C8—H5111.4
C7—N1—H1123.3N2—C8—H6111.4
C6—N2—C8113.0 (8)C7—C8—H6111.4
C6—N2—H2123.5H5—C8—H6109.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.393.039 (11)133
N2—H2···S1ii0.862.883.630 (9)147

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2555).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Beheshti, A., Clegg, W., Dale, S. H., Hyvadi, R. & Hussaini, F. (2007). Dalton Trans. pp. 2949–2956. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Crossley, I. R., Hill, A. F., Humphrey, E. R. & Smith, M. K. (2006). Organometallics, 25, 2242–2247.
  • Darensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem.38, 4715–4723. [PubMed]
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gok, Y. & Çetinkaya, E. (2004). Turk. J. Chem.28, 157–162.
  • Kuhn, N., Fahl, J., Fawzi, R. & Steimann, M. (1998). Z. Kristallogr. New Cryst. Struct.213, 434.
  • Kuhn, N. & Kratz, T. (1993). Synthesis, pp. 561–562.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mak, T. C. W., Jasim, K. S. & Chieh, C. (1985). Inorg. Chim. Acta, 99, 31–35.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  • Pasynsky, A.A., Il’in, A.N., Shapovalov, S.S., Torubayev, Yu.V. (2007). Russ. J. Inorg. Chem.52, 875–878.
  • Raper, E. S., Creighton, J. R., Oughtred, R. E. & Nowell, I. W. (1983). Acta Cryst. B39, 355–360.
  • Reglinski, J., Garner, M., Cassidy, I. D., Slavin, P. A., Spicer, M. D. & Armstrong, D. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2119–2126.
  • Saito, K., Kawno, Y. & Shimoi, M. (2007). Eur. J. Inorg. Chem., pp. 3195–3200.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valdés-Martinez, J., Enriquez, A., Cabrera, A. & Espinosa-Perez, G. (1996). Polyhedron, 15, 897–901.
  • Valdés-Martinez, J., Sierra-Romero, A., Alvarez-Toledano, C., Toscano, R. A. & García-Tapia, H. (1988). J. Organomet. Chem.352, 321–326.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography