PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1245.
Published online 2010 May 8. doi:  10.1107/S1600536810015643
PMCID: PMC2979445

4-Nitro­benzoic acid–2,2′-biimidazole (2/1)

Abstract

In the title adduct, C7H5NO4·0.5C6H6N4, the complete biimidazole molecule is generated by a crystallographic inversion centre. In the crystal, N—H(...)O and O—H(...)N hydrogen bonds connects the 4-nitro­benzoic acid and 2,2′-biimidazole units, affording multi-dimensional frameworks with graph-set descriptor R 2 2(9).

Related literature

For the potential applications of coordination complexes as functional materials and enzymes, see: Zhang et al. (2003 [triangle]) For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1245-scheme1.jpg

Experimental

Crystal data

  • C7H5NO4·0.5C6H6N4
  • M r = 234.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1245-efi1.jpg
  • a = 4.852 (1) Å
  • b = 10.9245 (10) Å
  • c = 19.7981 (10) Å
  • β = 90.496 (1)°
  • V = 1049.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.986, T max = 0.991
  • 5185 measured reflections
  • 1849 independent reflections
  • 1264 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.134
  • S = 1.00
  • 1849 reflections
  • 158 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015643/bx2278sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015643/bx2278Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shandong University for support.

supplementary crystallographic information

Comment

Recently, the design and synthesis of coordination complexes have attracted much attention due to their diversity structures as well as potential applications as functional materials and enzymes (Zhang et al. , 2003). Here, we report one by-product of the hydrothermal reaction of FeCl3 with 4-nitrobenzoic acid and biimidazole. The asymmetric unit of (I) consists of a 4-nitrobenzoic acid molecule and half biimidazole molecule, Fig 1. In the 4-nitrobenzoic acid molecule, the nitro group is rotated 10.6 (3)° from aromatic ring. N—H···O and O—H···N hydrogen bonds connects the C7H5NO4 . 0.5C6H6N4 units to affords a macrocycle with graph-set descriptor R22(9) (Bernstein et al., 1995), Fig2.

Experimental

A mixture of 4-nitrobenzoic acid (1 mmoL, 0.17 g), biimidazole (1 mmoL, 0.14 g), and iron trichloride (1 mmoL, 0.27 g) in 12 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for the single X-ray diffraction were obtained.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier). The lengths of bond H—O were constrained with 0.82 Å .

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme and with displacement ellipsoids at the 30% probability level. Unlabeled atoms are related to labeled atoms by the symmetry code (-x, 2-y, 1-z).

Crystal data

C7H5NO4·0.5C6H6N4F(000) = 484
Mr = 234.19Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1230 reflections
a = 4.852 (1) Åθ = 2.8–22.0°
b = 10.9245 (10) ŵ = 0.12 mm1
c = 19.7981 (10) ÅT = 296 K
β = 90.496 (1)°Block, colourless
V = 1049.4 (2) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1849 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
graphiteRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −5→5
Tmin = 0.986, Tmax = 0.991k = −12→9
5185 measured reflectionsl = −23→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134w = 1/[σ2(Fo2) + (0.078P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1849 reflectionsΔρmax = 0.25 e Å3
158 parametersΔρmin = −0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3475 (4)0.7795 (2)0.58109 (11)0.0548 (6)
C2−0.2424 (4)0.54924 (18)0.67279 (9)0.0493 (5)
C3−0.1097 (4)0.5072 (2)0.61681 (10)0.0577 (6)
H3−0.14750.42980.59950.069*
C40.0825 (4)0.5826 (2)0.58629 (11)0.0586 (6)
H40.17530.55570.54820.070*
C50.1368 (4)0.69760 (19)0.61233 (10)0.0502 (5)
C6−0.0063 (4)0.7371 (2)0.66845 (10)0.0565 (6)
H60.02830.81480.68580.068*
C7−0.1990 (4)0.66362 (19)0.69917 (11)0.0551 (6)
H7−0.29630.69080.73660.066*
C90.9965 (4)0.95887 (18)0.47185 (10)0.0468 (5)
C100.8856 (5)0.8140 (2)0.40287 (11)0.0676 (7)
H100.79610.74720.38360.081*
C111.0980 (5)0.8751 (2)0.37532 (11)0.0678 (7)
H111.18130.85800.33420.081*
H2A0.566 (4)0.7886 (19)0.5083 (11)0.080*
N10.8218 (3)0.86605 (16)0.46396 (9)0.0549 (5)
N21.1672 (3)0.96604 (16)0.41881 (8)0.0550 (5)
H21.29681.01880.41350.066*
N3−0.4451 (4)0.46869 (19)0.70582 (9)0.0596 (5)
O10.4057 (3)0.87721 (14)0.60756 (8)0.0689 (5)
O20.4566 (3)0.73838 (16)0.52653 (8)0.0739 (5)
O3−0.5946 (4)0.50989 (16)0.74887 (10)0.0873 (6)
O4−0.4548 (4)0.36262 (17)0.68800 (10)0.0926 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0442 (12)0.0579 (14)0.0621 (14)−0.0011 (10)−0.0014 (10)0.0114 (11)
C20.0449 (11)0.0507 (12)0.0522 (12)−0.0036 (9)0.0044 (9)0.0051 (10)
C30.0628 (14)0.0509 (12)0.0595 (13)−0.0100 (10)0.0119 (11)−0.0058 (10)
C40.0577 (14)0.0624 (14)0.0559 (13)−0.0052 (11)0.0124 (10)−0.0028 (11)
C50.0427 (12)0.0505 (13)0.0574 (12)−0.0028 (9)−0.0024 (10)0.0076 (10)
C60.0561 (13)0.0481 (13)0.0653 (13)−0.0028 (10)0.0007 (11)−0.0026 (10)
C70.0543 (13)0.0554 (13)0.0556 (12)0.0002 (10)0.0060 (10)−0.0031 (10)
C90.0399 (11)0.0483 (12)0.0523 (11)0.0004 (9)0.0024 (9)0.0056 (9)
C100.0701 (16)0.0621 (15)0.0705 (15)−0.0161 (12)0.0037 (12)−0.0095 (12)
C110.0719 (16)0.0709 (16)0.0609 (14)−0.0068 (13)0.0132 (12)−0.0095 (13)
N10.0520 (11)0.0516 (10)0.0610 (11)−0.0074 (8)0.0014 (8)0.0017 (9)
N20.0500 (10)0.0544 (11)0.0609 (11)−0.0053 (8)0.0088 (9)0.0025 (9)
N30.0581 (12)0.0634 (13)0.0573 (11)−0.0071 (10)0.0092 (9)0.0029 (9)
O10.0602 (10)0.0563 (10)0.0904 (11)−0.0113 (8)0.0095 (8)0.0033 (9)
O20.0713 (12)0.0737 (12)0.0769 (11)−0.0217 (9)0.0177 (9)0.0076 (9)
O30.0907 (13)0.0871 (13)0.0849 (12)−0.0056 (10)0.0419 (10)0.0034 (10)
O40.1113 (16)0.0649 (12)0.1021 (13)−0.0320 (10)0.0356 (11)−0.0089 (10)

Geometric parameters (Å, °)

C1—O11.222 (3)C7—H70.9300
C1—O21.288 (3)C9—N11.330 (2)
C1—C51.496 (3)C9—N21.345 (2)
C2—C31.366 (3)C9—C9i1.432 (4)
C2—C71.370 (3)C10—C111.347 (3)
C2—N31.476 (3)C10—N11.374 (3)
C3—C41.387 (3)C10—H100.9300
C3—H30.9300C11—N21.355 (3)
C4—C51.382 (3)C11—H110.9300
C4—H40.9300N2—H20.8600
C5—C61.384 (3)N3—O31.211 (2)
C6—C71.377 (3)N3—O41.212 (2)
C6—H60.9300O2—H2A0.845 (10)
O1—C1—O2124.7 (2)C2—C7—H7121.1
O1—C1—C5120.1 (2)C6—C7—H7121.1
O2—C1—C5115.2 (2)N1—C9—N2110.41 (18)
C3—C2—C7122.95 (19)N1—C9—C9i125.5 (2)
C3—C2—N3118.65 (19)N2—C9—C9i124.1 (2)
C7—C2—N3118.40 (18)C11—C10—N1109.3 (2)
C2—C3—C4118.5 (2)C11—C10—H10125.3
C2—C3—H3120.7N1—C10—H10125.3
C4—C3—H3120.7C10—C11—N2106.98 (19)
C5—C4—C3120.3 (2)C10—C11—H11126.5
C5—C4—H4119.9N2—C11—H11126.5
C3—C4—H4119.9C9—N1—C10105.70 (18)
C4—C5—C6119.17 (19)C9—N2—C11107.60 (17)
C4—C5—C1121.2 (2)C9—N2—H2126.2
C6—C5—C1119.7 (2)C11—N2—H2126.2
C7—C6—C5121.3 (2)O3—N3—O4122.56 (19)
C7—C6—H6119.3O3—N3—C2119.7 (2)
C5—C6—H6119.3O4—N3—C2117.72 (18)
C2—C7—C6117.76 (19)C1—O2—H2A113.3 (17)
C7—C2—C3—C41.6 (3)C5—C6—C7—C20.7 (3)
N3—C2—C3—C4−179.36 (18)N1—C10—C11—N2−0.4 (3)
C2—C3—C4—C5−0.1 (3)N2—C9—N1—C10−0.6 (2)
C3—C4—C5—C6−1.1 (3)C9i—C9—N1—C10178.9 (2)
C3—C4—C5—C1178.72 (18)C11—C10—N1—C90.6 (3)
O1—C1—C5—C4−175.01 (18)N1—C9—N2—C110.4 (2)
O2—C1—C5—C44.7 (3)C9i—C9—N2—C11−179.1 (2)
O1—C1—C5—C64.8 (3)C10—C11—N2—C90.0 (2)
O2—C1—C5—C6−175.56 (18)C3—C2—N3—O3−168.9 (2)
C4—C5—C6—C70.7 (3)C7—C2—N3—O310.2 (3)
C1—C5—C6—C7−179.06 (18)C3—C2—N3—O410.8 (3)
C3—C2—C7—C6−1.9 (3)C7—C2—N3—O4−170.2 (2)
N3—C2—C7—C6179.04 (18)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.85 (1)1.75 (1)2.580 (2)168 (3)
N2—H2···O1i0.861.892.742 (2)173

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2278).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181–1185.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography