PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1376.
Published online 2010 May 19. doi:  10.1107/S1600536810017101
PMCID: PMC2979433

Phen­yl(pyrrolo[2,1-a]isoquinolin-3-yl)methanone

Abstract

In the title compound, C19H13NO, the fused isoquinoline–pyrrole system is planar (r.m.s. deviation = 0.0249] Å) and makes a dihedral angle of 53.73 (9)° with the phenyl ring. An intra­molecular C—H(...)O inter­action generates an S(6) ring motif.

Related literature

For the biological activity of indolizine, see: Olden et al. (1991 [triangle]); Jaffrezou et al. (1992 [triangle]). For our work on the direct one-pot syntheses of pyrrolo[2,1-a]isoquinolines, see: Liu et al. (2010 [triangle]). For the preparation of pyrrolo[2,1-a]isoquinoline, see: Verna et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1376-scheme1.jpg

Experimental

Crystal data

  • C19H13NO
  • M r = 271.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1376-efi1.jpg
  • a = 28.637 (6) Å
  • b = 4.0400 (8) Å
  • c = 11.824 (2) Å
  • β = 101.02 (3)°
  • V = 1342.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995 [triangle]) T min = 0.976, T max = 0.992
  • 2351 measured reflections
  • 2351 independent reflections
  • 1388 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.139
  • S = 1.00
  • 2351 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017101/ds2027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017101/ds2027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Xuzhou Normal University (08XLR07) for financial support. This work was also sponsored by the Qing Lan Project (08QLT001).

supplementary crystallographic information

Comment

The natural and many synthetic indolizines have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Olden et al., 1991; Jaffrezou et al., 1992]. Pyrrolo[2,1-a]- isoquinolines are 7,8- benzo- fused indolizines and occur in several marine alkaloids. The synthesis of these structures is drawing much recent research interest [Verna et al., 2009]. In our research work on the direct one pot syntheses of pyrrolo[2,1-a]isoquinolines [Liu et al., 2010], we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure. The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). he fused isoquinoline-pyrrole moiety is planar. The dihedral angle between the isoquinoline-pyrrole fused ring and benzene ring is 53.73 (9)°. Although atoms C8, C11 and C19 attached to atom N are all of sp2 hybridization, their different environments cause slight differences in the N—C8, N—C11 and N—C19 bond lengths, and in the C19— N—C11, C19— N—C8 , C11—N—C8 and C10—C11—N angles (Table 1). An intramolecular C—H···O weak hydrogen bond generating an S(6) ring is observed (Table 2). The crystal packing is stabilized by van der Waals forces.

Experimental

The compound (I) was prepared by the reaction of DMF solution of 2-(2-oxo-2- phenylethyl)isoquinolinium bromide with an excess amount of maleic acid in the presence of TPCD and potassium carbonate. After the reaction was completed, the mixture was isolated by chromatography on a silica gel column after evaporation of the solvent. Single crystals of (I) were obtained by slow evaporation from an petroleum ether-ethyl acetate(3:1) solvent system (yield 80%).

Refinement

The H atoms were geometrically placed and were treated as riding, with C—H = 0.93Å .

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C19H13NOF(000) = 568
Mr = 271.30Dx = 1.342 Mg m3
Monoclinic, P21/cMelting point: 413 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 28.637 (6) ÅCell parameters from 25 reflections
b = 4.0400 (8) Åθ = 9–12°
c = 11.824 (2) ŵ = 0.08 mm1
β = 101.02 (3)°T = 295 K
V = 1342.7 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1388 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.0°, θmin = 1.5°
ω/2θ scansh = −34→33
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995)k = 0→4
Tmin = 0.976, Tmax = 0.992l = 0→14
2351 measured reflections3 standard reflections every 200 reflections
2351 independent reflections intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.139w = 1/[σ2(Fo2) + (0.015P)2 + 2.250P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2351 reflectionsΔρmax = 0.23 e Å3
190 parametersΔρmin = −0.29 e Å3
0 restraintsAbsolute structure: (XCAD4; Harms & Wocadlo, 1995)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.22455 (9)0.5534 (7)0.9319 (2)0.0382 (7)
C110.19331 (11)0.4146 (9)0.9955 (3)0.0402 (9)
C70.31218 (12)0.5686 (10)0.9370 (3)0.0485 (10)
O0.30873 (9)0.6625 (9)0.8377 (2)0.0725 (10)
C120.14286 (12)0.4449 (10)0.9532 (3)0.0447 (9)
C30.36071 (11)0.5108 (10)1.0092 (3)0.0453 (9)
C80.27112 (11)0.4828 (9)0.9873 (3)0.0402 (9)
C190.20843 (12)0.7328 (10)0.8334 (3)0.0461 (9)
H19A0.23020.83090.79470.055*
C180.16185 (12)0.7680 (10)0.7927 (3)0.0513 (10)
H18A0.15170.89290.72650.062*
C20.37259 (12)0.6034 (10)1.1233 (3)0.0521 (10)
H2A0.34960.69351.16000.062*
C170.12699 (12)0.6158 (10)0.8496 (3)0.0483 (10)
C90.26796 (12)0.3050 (10)1.0848 (3)0.0458 (9)
H9A0.29360.22841.13890.055*
C100.22029 (12)0.2579 (10)1.0897 (3)0.0477 (10)
H10A0.20860.14161.14620.057*
C130.10950 (12)0.3043 (10)1.0117 (3)0.0528 (10)
H13A0.11970.18781.07980.063*
C140.06138 (14)0.3388 (13)0.9681 (4)0.0706 (14)
H14A0.03930.24981.00800.085*
C160.07802 (13)0.6403 (12)0.8072 (3)0.0628 (12)
H16A0.06720.75090.73820.075*
C60.45267 (14)0.4265 (12)1.1284 (4)0.0711 (13)
H6A0.48370.39901.16840.085*
C150.04577 (15)0.5046 (13)0.8655 (4)0.0711 (14)
H15A0.01340.52380.83610.085*
C40.39519 (13)0.3782 (11)0.9543 (3)0.0567 (11)
H4A0.38750.32070.87690.068*
C50.44071 (14)0.3323 (12)1.0152 (4)0.0684 (13)
H5A0.46350.23650.97920.082*
C10.41862 (13)0.5626 (12)1.1833 (3)0.0650 (12)
H1A0.42670.62631.26020.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0359 (15)0.0496 (19)0.0307 (13)0.0024 (15)0.0101 (11)−0.0003 (15)
C110.0396 (19)0.048 (2)0.0360 (17)−0.0023 (18)0.0148 (15)−0.0037 (18)
C70.046 (2)0.064 (3)0.0387 (18)0.013 (2)0.0169 (16)0.007 (2)
O0.0555 (17)0.117 (3)0.0500 (15)0.0072 (19)0.0227 (13)0.0212 (19)
C120.0393 (19)0.050 (2)0.047 (2)−0.0018 (19)0.0148 (16)−0.013 (2)
C30.0328 (18)0.058 (3)0.049 (2)0.0002 (19)0.0162 (16)0.007 (2)
C80.0398 (19)0.050 (2)0.0334 (17)0.0048 (18)0.0122 (14)0.0029 (18)
C190.051 (2)0.057 (3)0.0318 (17)0.006 (2)0.0117 (15)0.0012 (19)
C180.049 (2)0.064 (3)0.0399 (19)0.017 (2)0.0073 (16)0.009 (2)
C20.043 (2)0.062 (3)0.054 (2)−0.002 (2)0.0160 (17)0.000 (2)
C170.0379 (19)0.061 (3)0.046 (2)0.008 (2)0.0071 (15)−0.010 (2)
C90.0394 (19)0.060 (3)0.0387 (18)0.008 (2)0.0095 (15)0.0068 (19)
C100.045 (2)0.061 (3)0.0396 (18)−0.007 (2)0.0161 (15)0.006 (2)
C130.046 (2)0.057 (3)0.059 (2)−0.008 (2)0.0191 (18)−0.010 (2)
C140.041 (2)0.091 (4)0.085 (3)−0.015 (3)0.026 (2)−0.028 (3)
C160.046 (2)0.075 (3)0.064 (2)0.012 (2)0.0013 (19)−0.008 (3)
C60.040 (2)0.082 (4)0.090 (3)−0.004 (2)0.008 (2)0.022 (3)
C150.042 (2)0.083 (4)0.086 (3)0.003 (3)0.007 (2)−0.027 (3)
C40.046 (2)0.064 (3)0.066 (2)0.003 (2)0.0244 (19)−0.002 (2)
C50.048 (2)0.068 (3)0.097 (3)0.006 (2)0.033 (2)0.005 (3)
C10.048 (2)0.085 (3)0.060 (2)−0.012 (3)0.0059 (19)0.003 (3)

Geometric parameters (Å, °)

N—C191.374 (4)C17—C161.399 (5)
N—C111.392 (4)C9—C101.390 (4)
N—C81.399 (4)C9—H9A0.9300
C11—C101.382 (5)C10—H10A0.9300
C11—C121.441 (4)C13—C141.383 (5)
C7—O1.220 (4)C13—H13A0.9300
C7—C81.458 (4)C14—C151.383 (6)
C7—C31.504 (5)C14—H14A0.9300
C12—C131.402 (5)C16—C151.368 (6)
C12—C171.404 (5)C16—H16A0.9300
C3—C21.379 (5)C6—C51.371 (5)
C3—C41.388 (4)C6—C11.385 (5)
C8—C91.376 (4)C6—H6A0.9300
C19—C181.336 (4)C15—H15A0.9300
C19—H19A0.9300C4—C51.376 (5)
C18—C171.444 (5)C4—H4A0.9300
C18—H18A0.9300C5—H5A0.9300
C2—C11.382 (5)C1—H1A0.9300
C2—H2A0.9300
C19—N—C11121.6 (3)C8—C9—C10109.2 (3)
C19—N—C8129.8 (3)C8—C9—H9A125.4
C11—N—C8108.5 (3)C10—C9—H9A125.4
C10—C11—N107.6 (3)C11—C10—C9107.8 (3)
C10—C11—C12133.4 (3)C11—C10—H10A126.1
N—C11—C12118.9 (3)C9—C10—H10A126.1
O—C7—C8123.0 (3)C14—C13—C12120.0 (4)
O—C7—C3119.4 (3)C14—C13—H13A120.0
C8—C7—C3117.4 (3)C12—C13—H13A120.0
C13—C12—C17119.5 (3)C13—C14—C15120.5 (4)
C13—C12—C11121.8 (3)C13—C14—H14A119.7
C17—C12—C11118.7 (3)C15—C14—H14A119.7
C2—C3—C4119.8 (3)C15—C16—C17121.2 (4)
C2—C3—C7122.8 (3)C15—C16—H16A119.4
C4—C3—C7117.2 (3)C17—C16—H16A119.4
C9—C8—N106.9 (3)C5—C6—C1120.1 (4)
C9—C8—C7130.8 (3)C5—C6—H6A119.9
N—C8—C7122.1 (3)C1—C6—H6A119.9
C18—C19—N120.8 (3)C16—C15—C14120.0 (4)
C18—C19—H19A119.6C16—C15—H15A120.0
N—C19—H19A119.6C14—C15—H15A120.0
C19—C18—C17121.2 (3)C5—C4—C3119.7 (4)
C19—C18—H18A119.4C5—C4—H4A120.2
C17—C18—H18A119.4C3—C4—H4A120.2
C3—C2—C1120.2 (4)C6—C5—C4120.5 (4)
C3—C2—H2A119.9C6—C5—H5A119.7
C1—C2—H2A119.9C4—C5—H5A119.7
C16—C17—C12118.8 (4)C6—C1—C2119.6 (4)
C16—C17—C18122.5 (4)C6—C1—H1A120.2
C12—C17—C18118.6 (3)C2—C1—H1A120.2
C19—N—C11—C10−178.7 (3)C13—C12—C17—C16−0.1 (6)
C8—N—C11—C10−0.2 (4)C11—C12—C17—C16178.8 (4)
C19—N—C11—C123.5 (5)C13—C12—C17—C18178.0 (4)
C8—N—C11—C12−178.0 (3)C11—C12—C17—C18−3.0 (5)
C10—C11—C12—C131.4 (7)C19—C18—C17—C16−178.2 (4)
N—C11—C12—C13178.5 (3)C19—C18—C17—C123.8 (6)
C10—C11—C12—C17−177.5 (4)N—C8—C9—C101.2 (4)
N—C11—C12—C17−0.4 (5)C7—C8—C9—C10−173.2 (4)
O—C7—C3—C2138.8 (4)N—C11—C10—C90.9 (4)
C8—C7—C3—C2−46.0 (6)C12—C11—C10—C9178.2 (4)
O—C7—C3—C4−36.8 (6)C8—C9—C10—C11−1.3 (5)
C8—C7—C3—C4138.3 (4)C17—C12—C13—C14−1.0 (6)
C19—N—C8—C9177.8 (3)C11—C12—C13—C14−179.9 (4)
C11—N—C8—C9−0.6 (4)C12—C13—C14—C151.6 (7)
C19—N—C8—C7−7.2 (6)C12—C17—C16—C150.7 (6)
C11—N—C8—C7174.4 (3)C18—C17—C16—C15−177.3 (4)
O—C7—C8—C9162.9 (4)C17—C16—C15—C14−0.2 (7)
C3—C7—C8—C9−12.1 (6)C13—C14—C15—C16−1.0 (7)
O—C7—C8—N−10.8 (6)C2—C3—C4—C51.7 (6)
C3—C7—C8—N174.2 (3)C7—C3—C4—C5177.5 (4)
C11—N—C19—C18−2.9 (5)C1—C6—C5—C41.4 (7)
C8—N—C19—C18178.9 (4)C3—C4—C5—C6−2.2 (7)
N—C19—C18—C17−0.8 (6)C5—C6—C1—C2−0.1 (7)
C4—C3—C2—C1−0.4 (6)C3—C2—C1—C6−0.4 (7)
C7—C3—C2—C1−175.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H19A···O0.932.312.875 (4)119

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2027).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res.52, 1352–1359. [PubMed]
  • Liu, Y., Zhang, Y., Shen, Y.-M., Hu, H.-W. & Xu, J.-H. (2010). Org. Biomol. Chem. doi:10.1039/c000277a.
  • Olden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Creaipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther.50, 285–290. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Verna, A. K., Kesharwani, T., Singh, J., Tandon, V. & Larock, R. C. (2009). Angew. Chem. Int. Ed.48, 1138–1143. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography