PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1359.
Published online 2010 May 15. doi:  10.1107/S1600536810017113
PMCID: PMC2979426

4,4′-Dimethyl-1,1′-(p-phenyl­enedimethyl­ene)dipyridinium bis­[7,7,8,8-tetra­cyano­quinodimethanide(1−)]

Abstract

In the title salt, C20H22N2 2+·2C12H4N4 , the cations and anions stack along the b axis into segregated columns. In the cation, which has a crystallographically imposed centre of symmetry, the dihedral angle between the benzene and pyridine rings is 89.14 (4)°. Centrosymmetrically related anions form dimers by π–π stacking inter­actions, with centroid–centroid separations of 3.874 (4) Å. The crystal packing is stabilized by inter­columnar C—H(...)N hydrogen bonds.

Related literature

For general background to the planar organic mol­ecule 7,7,8,8-tetra­cyano­quinodimethane, see: Alonso et al. (2005 [triangle]); Madalan et al. (2002 [triangle]); Liu et al. (2008 [triangle]). For the role played by the size and shape of the counter-cations in determining the ground-state electronic properties of the resulting materials, see: Ren, Meng et al. (2002 [triangle]); Ren, et al. (2003 [triangle]); Ren, Chen et al. (2002 [triangle]). For related structures, see: Liu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1359-scheme1.jpg

Experimental

Crystal data

  • C20H22N2 2+·2C12H4N4
  • M r = 698.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1359-efi1.jpg
  • a = 8.5904 (12) Å
  • b = 8.6786 (11) Å
  • c = 13.3016 (17) Å
  • α = 101.558 (2)°
  • β = 106.134 (2)°
  • γ = 97.906 (2)°
  • V = 913.4 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.981, T max = 0.988
  • 6854 measured reflections
  • 3353 independent reflections
  • 2243 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.126
  • S = 1.00
  • 3353 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017113/rz2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017113/rz2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Educational Commission of Anhui Province of China (No. KJ2010A229).

supplementary crystallographic information

Comment

The search for new compounds with promising electronic, and magnetic properties has prompted chemists to combine different spin carriers within the same molecular or supramolecular entity (Madalan et al., 2002). One of the most extensively used radicals in these studies has been the planar organic molecule 7,7,8,8-tetracyanoquinodimethane, [C8H4(CN)4], TCNQ, since it shows a low reduction potential which makes it a suitable acceptor in charge-transfer processes. Another significant feature of this acceptor is its tendency to overlap its π-delocalized system with those of neighbouring molecules to form stacks with different degrees of electron delocalization (Alonso et al., 2005). Previous work has shown that molecular stacks of charge-transfer salts exhibit low-dimensional properties in some cases, which have intriguing anisotropic magnetic, electronic and structural characteristics (Ren, Meng et al., 2002; Ren et al., 2003; Liu et al., 2005). Furthermore, the size and shape of the counter-cations play an important role in determining the ground-state properties of the resulting materials (Ren, Chen et al., 2002; Liu et al., 2008). As a result, charge-transfer salts consisting of the TCNQ anion and benzylpyridinium cations could offer the possibility of systematically studying the fundamental relationship between the stack structure and the size and steric properties of substituent groups. In this communication, the crystal structure of the title complex is reported.

The asymmetric unit of the title compound contains a half of a (C20H22N2)2+ cation and one [C8H4(CN)4]- anion (Fig. 1). Anions and cations stack into completely segregated columns along the b axis, as illustrated in Fig. 2. Within an anion column, [(TCNQ)2]2- dimers are formed by π···π stacking interactions with a centroid-to-centroid distance of 3.874 (4) Å, and adjacent units are displaced relative to each other along the direction of the shorter molecular axis of TCNQ with centroid-to-centroid separations of 6.556 (4) Å (Fig. 3). The (C20H22N2)2+ cation affords a trans conformation, with a dihedral angle between the benzene ring and the pyridine rings of 89.14 (4)°. The crystal packing is stabilized by C—H···N intercolumar linkages (Table 1).

Experimental

1,1'-(1,4-Phenylenebis(methylene))bis(4-methylpyridin-1-ium) iodide was prepared by the direct combination of 1:2 molar equivalents of 1,1'-(1,4-phenylenebis(methylene))bis(4-methylpyridin-1-ium) chloride and NaI in a warm acetone solution at 313 K. A white precipitate was formed (NaCl), which was filtered off, and a white microcrystalline product was obtained by evaporating the filtrate. 1:2 Molar equivalents of 1,1'-(1,4-phenylenebis(methylene))bis(4-methylpyridin-1-ium) iodide and LiTCNQ were mixed directly in a methanol solution, and the mixture was refluxed for 12 h. The black microcrystalline product which formed was filtered off, washed with MeOH and dried in vacuo. Single crystals of the title compound suitable for X-ray structure analysis were obtained by diffusing diethyl ether into a MeCN solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
Fig. 2.
Packing diagram of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A side view of the one-dimensional anion column of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

C20H22N22+·2C12H4N4Z = 1
Mr = 698.78F(000) = 364
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5904 (12) ÅCell parameters from 2212 reflections
b = 8.6786 (11) Åθ = 2.5–26.4°
c = 13.3016 (17) ŵ = 0.08 mm1
α = 101.558 (2)°T = 293 K
β = 106.134 (2)°Block, dark green
γ = 97.906 (2)°0.24 × 0.22 × 0.16 mm
V = 913.4 (2) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer3353 independent reflections
Radiation source: sealed tube2243 reflections with I > 2σ(I)
graphiteRint = 0.023
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→10
Tmin = 0.981, Tmax = 0.988k = −10→10
6854 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1398P] where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.036
245 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3619 (2)0.1249 (2)−0.12031 (15)0.0513 (5)
C20.1730 (3)0.2868 (2)−0.18890 (17)0.0594 (5)
C30.2953 (2)0.2639 (2)−0.09960 (15)0.0505 (5)
C40.3415 (2)0.3713 (2)0.00302 (15)0.0464 (4)
C50.4625 (2)0.3502 (2)0.09308 (15)0.0482 (5)
H50.51250.26200.08490.058*
C60.5072 (2)0.4564 (2)0.19137 (15)0.0502 (5)
H60.58730.43880.24890.060*
C70.4357 (2)0.5930 (2)0.20912 (15)0.0488 (4)
C80.3129 (2)0.6118 (2)0.11922 (16)0.0553 (5)
H80.26180.69910.12770.066*
C90.2674 (2)0.5063 (2)0.02115 (16)0.0550 (5)
H90.18540.5228−0.03580.066*
C100.4820 (2)0.7038 (2)0.31119 (16)0.0547 (5)
C110.5983 (3)0.6827 (3)0.40268 (19)0.0699 (6)
C120.4142 (2)0.8429 (3)0.32460 (16)0.0595 (5)
C130.7386 (3)0.2441 (4)0.4765 (2)0.1005 (9)
H13A0.72870.35320.50070.151*
H13B0.78320.20310.53800.151*
H13C0.63140.17960.43440.151*
C140.8517 (2)0.2386 (3)0.40876 (15)0.0615 (6)
C150.9129 (2)0.1013 (3)0.38115 (16)0.0603 (5)
H150.88380.01160.40540.072*
C161.0148 (2)0.0970 (2)0.31919 (15)0.0516 (5)
H161.05580.00490.30190.062*
C171.0016 (2)0.3596 (2)0.30954 (15)0.0541 (5)
H171.03310.44840.28510.065*
C180.9013 (2)0.3681 (3)0.37146 (16)0.0608 (5)
H180.86490.46290.38940.073*
C191.1638 (2)0.2155 (2)0.21295 (15)0.0556 (5)
H19A1.26190.17900.24780.067*
H19B1.19900.32180.20430.067*
C201.0766 (2)0.1027 (2)0.10308 (15)0.0463 (4)
C211.1573 (2)−0.0062 (2)0.05873 (16)0.0536 (5)
H211.2635−0.01180.09800.064*
C220.9181 (2)0.1069 (2)0.04324 (15)0.0537 (5)
H220.86140.17880.07220.064*
N10.4125 (2)0.0106 (2)−0.13825 (15)0.0691 (5)
N20.0727 (3)0.3070 (2)−0.25956 (17)0.0860 (7)
N30.3576 (3)0.9543 (2)0.33418 (17)0.0811 (6)
N40.6931 (3)0.6641 (3)0.47670 (18)0.1053 (8)
N51.05663 (17)0.22537 (17)0.28280 (11)0.0450 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0510 (10)0.0456 (11)0.0541 (12)0.0084 (9)0.0109 (9)0.0147 (9)
C20.0663 (13)0.0334 (10)0.0669 (14)0.0076 (9)0.0044 (11)0.0116 (10)
C30.0517 (10)0.0386 (10)0.0582 (12)0.0100 (8)0.0089 (9)0.0170 (9)
C40.0477 (10)0.0360 (9)0.0550 (11)0.0079 (8)0.0131 (9)0.0154 (9)
C50.0449 (10)0.0412 (10)0.0595 (12)0.0126 (8)0.0129 (9)0.0171 (9)
C60.0451 (10)0.0483 (11)0.0552 (12)0.0115 (8)0.0091 (9)0.0170 (9)
C70.0455 (10)0.0453 (10)0.0563 (12)0.0085 (8)0.0160 (9)0.0149 (9)
C80.0569 (11)0.0444 (11)0.0645 (13)0.0195 (9)0.0148 (10)0.0133 (10)
C90.0552 (11)0.0450 (11)0.0607 (13)0.0171 (9)0.0060 (10)0.0170 (10)
C100.0542 (11)0.0528 (12)0.0578 (12)0.0164 (9)0.0174 (10)0.0119 (10)
C110.0687 (14)0.0693 (15)0.0610 (15)0.0259 (11)0.0103 (12)−0.0010 (11)
C120.0608 (12)0.0614 (14)0.0584 (13)0.0173 (11)0.0207 (10)0.0136 (11)
C130.0858 (17)0.130 (2)0.0825 (18)0.0091 (16)0.0458 (15)0.0010 (16)
C140.0526 (11)0.0783 (15)0.0427 (11)0.0085 (10)0.0121 (9)−0.0015 (10)
C150.0645 (12)0.0624 (13)0.0504 (12)0.0020 (10)0.0153 (10)0.0179 (10)
C160.0573 (11)0.0398 (10)0.0558 (12)0.0097 (8)0.0135 (9)0.0137 (9)
C170.0651 (12)0.0447 (11)0.0493 (11)0.0178 (9)0.0093 (10)0.0130 (9)
C180.0618 (12)0.0584 (13)0.0556 (13)0.0218 (10)0.0106 (10)0.0042 (10)
C190.0538 (11)0.0557 (12)0.0555 (12)0.0047 (9)0.0199 (10)0.0105 (10)
C200.0470 (10)0.0473 (10)0.0496 (11)0.0104 (8)0.0197 (9)0.0165 (8)
C210.0462 (10)0.0610 (12)0.0566 (12)0.0184 (9)0.0149 (9)0.0180 (10)
C220.0551 (11)0.0543 (12)0.0576 (12)0.0216 (9)0.0234 (10)0.0120 (10)
N10.0723 (11)0.0566 (11)0.0773 (13)0.0242 (9)0.0182 (10)0.0145 (9)
N20.0910 (14)0.0543 (11)0.0851 (14)0.0136 (10)−0.0172 (12)0.0205 (10)
N30.0905 (14)0.0739 (13)0.0845 (14)0.0362 (11)0.0307 (12)0.0143 (11)
N40.1095 (17)0.1122 (18)0.0688 (14)0.0548 (15)−0.0072 (13)−0.0060 (13)
N50.0505 (8)0.0400 (8)0.0415 (8)0.0092 (7)0.0110 (7)0.0083 (7)

Geometric parameters (Å, °)

C1—N11.145 (2)C13—H13B0.9600
C1—C31.415 (3)C13—H13C0.9600
C2—N21.146 (2)C14—C181.379 (3)
C2—C31.419 (3)C14—C151.391 (3)
C3—C41.406 (3)C15—C161.358 (3)
C4—C51.413 (2)C15—H150.9300
C4—C91.419 (2)C16—N51.344 (2)
C5—C61.359 (2)C16—H160.9300
C5—H50.9300C17—N51.337 (2)
C6—C71.416 (2)C17—C181.347 (3)
C6—H60.9300C17—H170.9300
C7—C81.412 (3)C18—H180.9300
C7—C101.413 (3)C19—N51.477 (2)
C8—C91.353 (3)C19—C201.507 (3)
C8—H80.9300C19—H19A0.9700
C9—H90.9300C19—H19B0.9700
C10—C111.406 (3)C20—C221.383 (2)
C10—C121.412 (3)C20—C211.380 (2)
C11—N41.146 (3)C21—C22i1.380 (3)
C12—N31.141 (2)C21—H210.9300
C13—C141.497 (3)C22—C21i1.380 (3)
C13—H13A0.9600C22—H220.9300
N1—C1—C3178.6 (2)C18—C14—C15116.78 (18)
N2—C2—C3178.5 (2)C18—C14—C13122.2 (2)
C4—C3—C2121.18 (16)C15—C14—C13121.1 (2)
C4—C3—C1123.07 (16)C16—C15—C14120.68 (19)
C2—C3—C1115.72 (17)C16—C15—H15119.7
C3—C4—C5122.03 (16)C14—C15—H15119.7
C3—C4—C9121.27 (16)N5—C16—C15120.27 (18)
C5—C4—C9116.70 (17)N5—C16—H16119.9
C6—C5—C4121.22 (16)C15—C16—H16119.9
C6—C5—H5119.4N5—C17—C18120.89 (19)
C4—C5—H5119.4N5—C17—H17119.6
C5—C6—C7122.16 (17)C18—C17—H17119.6
C5—C6—H6118.9C17—C18—C14121.10 (19)
C7—C6—H6118.9C17—C18—H18119.4
C8—C7—C10121.36 (17)C14—C18—H18119.4
C8—C7—C6116.30 (17)N5—C19—C20112.18 (14)
C10—C7—C6122.33 (17)N5—C19—H19A109.2
C9—C8—C7121.90 (17)C20—C19—H19A109.2
C9—C8—H8119.1N5—C19—H19B109.2
C7—C8—H8119.1C20—C19—H19B109.2
C8—C9—C4121.70 (17)H19A—C19—H19B107.9
C8—C9—H9119.1C22—C20—C21118.33 (17)
C4—C9—H9119.1C22—C20—C19121.95 (17)
C11—C10—C12117.16 (18)C21—C20—C19119.70 (16)
C11—C10—C7122.08 (17)C20—C21—C22i120.67 (17)
C12—C10—C7120.74 (18)C20—C21—H21119.7
N4—C11—C10179.3 (2)C22i—C21—H21119.7
N3—C12—C10179.1 (2)C20—C22—C21i121.00 (17)
C14—C13—H13A109.5C20—C22—H22119.5
C14—C13—H13B109.5C21i—C22—H22119.5
H13A—C13—H13B109.5C17—N5—C16120.25 (16)
C14—C13—H13C109.5C17—N5—C19120.70 (15)
H13A—C13—H13C109.5C16—N5—C19119.05 (15)
H13B—C13—H13C109.5
C2—C3—C4—C5179.72 (17)C18—C14—C15—C16−0.8 (3)
C1—C3—C4—C51.8 (3)C13—C14—C15—C16179.7 (2)
C2—C3—C4—C90.1 (3)C14—C15—C16—N5−0.6 (3)
C1—C3—C4—C9−177.77 (18)N5—C17—C18—C14−0.3 (3)
C3—C4—C5—C6179.13 (17)C15—C14—C18—C171.3 (3)
C9—C4—C5—C6−1.2 (2)C13—C14—C18—C17−179.2 (2)
C4—C5—C6—C70.0 (3)N5—C19—C20—C2246.7 (2)
C5—C6—C7—C81.0 (3)N5—C19—C20—C21−134.85 (17)
C5—C6—C7—C10−179.94 (18)C22—C20—C21—C22i0.7 (3)
C10—C7—C8—C9−179.89 (19)C19—C20—C21—C22i−177.80 (17)
C6—C7—C8—C9−0.8 (3)C21—C20—C22—C21i−0.7 (3)
C7—C8—C9—C4−0.4 (3)C19—C20—C22—C21i177.76 (17)
C3—C4—C9—C8−178.94 (18)C18—C17—N5—C16−1.2 (3)
C5—C4—C9—C81.4 (3)C18—C17—N5—C19178.69 (17)
C8—C7—C10—C11176.93 (19)C15—C16—N5—C171.7 (3)
C6—C7—C10—C11−2.1 (3)C15—C16—N5—C19−178.25 (16)
C8—C7—C10—C12−4.2 (3)C20—C19—N5—C17−110.79 (18)
C6—C7—C10—C12176.78 (18)C20—C19—N5—C1669.1 (2)

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···N3ii0.932.623.320 (3)132
C17—H17···N2iii0.932.473.204 (3)136
C19—H19A···N3ii0.972.573.394 (3)143

Symmetry codes: (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2446).

References

  • Alonso, C., Ballester, L., Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E. & Azcondo, M. T. (2005). Eur. J. Inorg. Chem. pp. 486–495.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct.743, 125–133.
  • Liu, G. X., Xu, H., Ren, X. M. & Sun, W. Y. (2008). CrystEngComm, 10, 1574–1582.
  • Madalan, A. M., Roesky, H. W., Andruh, M., Noltemeyerb, M. & Stanicac, N. (2002). Chem. Commun. pp. 1638–1639. [PubMed]
  • Ren, X. M., Chen, Y. C., He, C. & Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915–3918.
  • Ren, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & Wu, P. H. (2003). Dalton Trans. pp. 1345–1351.
  • Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem.41, 5686–5692. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography