PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1504.
Published online 2010 May 29. doi:  10.1107/S1600536810015126
PMCID: PMC2979423

2-[(2,4-Dihydroxy­benzyl­idene)amino]-3′,6′-bis­(ethyl­amino)spiro­[isoindoline-1,9′-xanthen]-3-one

Abstract

The title compound, C35H36N4O4, was prepared as a spiro­lactam ring formation of rhodamine B dye for comparison with a ring-opened form. The xanthene ring system is approximately planar. The r.m.s. deviation from planarity is 0.064 (6) Å for the xanthene ring. The dihedral angles formed by the spiro­lactam and 2,4-dihydroxy­benzene rings with the xanthene ring system are 86.6 (9) and 88.0 (9)°, respectively.

Related literature

For the structures of rhodamine derivatives bearing a lactam moiety, see: Deng et al. (2009 [triangle]); Kwon et al. (2005 [triangle]); Tian & Peng (2008 [triangle]); Wu et al. (2007 [triangle]); Xu et al. (2009 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1504-scheme1.jpg

Experimental

Crystal data

  • C35H36N4O4
  • M r = 576.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1504-efi1.jpg
  • a = 9.4461 (4) Å
  • b = 26.6905 (12) Å
  • c = 12.2453 (5) Å
  • β = 104.423 (2)°
  • V = 2990.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.25 × 0.23 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.982
  • 15630 measured reflections
  • 5310 independent reflections
  • 2162 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.215
  • S = 1.02
  • 5310 reflections
  • 393 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015126/jh2147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015126/jh2147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of the Education Department of Henan Province (2010B150029) and Science and Technique Foundation of Henan Province (0624290013, 082300420110) for support.

supplementary crystallographic information

Comment

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Kwon et al., 2005; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models , (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactam ring fragment is 86.6 (9)°. The dihedral angle between the xanthene mean planes and the 2,4-dihydroxybenzene ring is 88.0 (9)°.

Experimental

A portion of rhodamine B hydrazide (0.46 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.16 g, 1.2 mmol) were mixed in 20 ml e thanol and three drops HAc was added. The reaction solution was refluxed for 3 hours under N2 atmosphere, the reslulting solution was evaporated to 10 ml and allowed to stand at room temperature overnight. The reddish crystals which appeared next day were filtered and washed by ethanol to give 0.46 g of the title compound in 80% yield. Single crystals suitable for X-ray measurements were obtained from mother liquid by slow evaporation at room temperature.

Refinement

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.

Crystal data

C35H36N4O4F(000) = 1224
Mr = 576.68Dx = 1.281 Mg m3Dm = 1.281 Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4461 (4) ÅCell parameters from 922 reflections
b = 26.6905 (12) Åθ = 2.3–17.5°
c = 12.2453 (5) ŵ = 0.09 mm1
β = 104.423 (2)°T = 296 K
V = 2990.0 (2) Å3Block, colorless
Z = 40.25 × 0.23 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer5310 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
graphiteRint = 0.087
[var phi] and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→7
Tmin = 0.979, Tmax = 0.982k = −31→30
15630 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0857P)2] where P = (Fo2 + 2Fc2)/3
5310 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3223 (7)0.6153 (3)0.9041 (5)0.133 (2)
H1A0.33700.61380.82940.199*
H1B0.39210.59400.95320.199*
H1C0.33480.64910.93130.199*
C20.1753 (7)0.5984 (2)0.9018 (4)0.103 (2)
H2A0.16040.59900.97740.124*
H2B0.16130.56440.87360.124*
C30.0711 (7)0.6969 (3)0.9716 (6)0.157 (3)
H3A0.00600.72230.98610.236*
H3B0.15980.71230.96350.236*
H3C0.09320.67371.03350.236*
C40.0080 (7)0.6728 (3)0.8778 (5)0.142 (3)
H4A−0.01790.69830.81990.170*
H4B−0.08350.66010.88920.170*
C50.0391 (5)0.62734 (19)0.7115 (4)0.0658 (13)
C6−0.0518 (5)0.66052 (17)0.6381 (4)0.0682 (14)
H6−0.09080.68790.66750.082*
C7−0.0847 (4)0.65369 (17)0.5250 (4)0.0619 (12)
H7−0.14720.67640.47920.074*
C8−0.0288 (4)0.61409 (15)0.4742 (3)0.0472 (10)
C90.0635 (4)0.58217 (15)0.5468 (3)0.0501 (11)
C100.0969 (5)0.58814 (18)0.6619 (4)0.0651 (13)
H100.15950.56540.70760.078*
C110.1123 (4)0.53531 (15)0.3966 (3)0.0490 (11)
C120.1954 (5)0.49728 (16)0.3683 (4)0.0580 (12)
H120.25690.47890.42530.070*
C130.1896 (4)0.48581 (17)0.2564 (4)0.0562 (11)
C140.3593 (6)0.41531 (19)0.3137 (4)0.0833 (16)
H14A0.37370.38350.27970.100*
H14B0.30580.40880.37030.100*
C150.5050 (6)0.4366 (2)0.3703 (5)0.110 (2)
H15A0.56030.44200.31540.165*
H15B0.55630.41350.42650.165*
H15C0.49200.46780.40530.165*
C160.3493 (8)0.4691 (3)0.0552 (6)0.142 (3)
H16A0.30510.50180.04580.213*
H16B0.35260.4560−0.01720.213*
H16C0.44680.47160.10230.213*
C170.2632 (7)0.4358 (2)0.1076 (5)0.1038 (19)
H17A0.29710.40170.10330.125*
H17B0.16190.43730.06500.125*
C180.0957 (5)0.51575 (18)0.1741 (4)0.0656 (13)
H180.08840.50990.09800.079*
C190.0150 (5)0.55344 (17)0.2056 (4)0.0637 (13)
H19−0.04550.57260.14960.076*
C200.0197 (4)0.56410 (15)0.3172 (3)0.0471 (10)
C21−0.0665 (4)0.60681 (15)0.3484 (3)0.0477 (10)
C22−0.2316 (4)0.60356 (16)0.2994 (3)0.0493 (10)
C23−0.3254 (5)0.56787 (17)0.3198 (3)0.0613 (12)
H23−0.29160.53980.36350.074*
C24−0.4729 (5)0.57535 (19)0.2726 (4)0.0709 (14)
H24−0.53960.55190.28590.085*
C25−0.5239 (5)0.6164 (2)0.2065 (4)0.0705 (14)
H25−0.62400.62060.17770.085*
C26−0.4286 (5)0.65122 (17)0.1826 (4)0.0640 (13)
H26−0.46210.67850.13590.077*
C27−0.2806 (4)0.64420 (15)0.2306 (3)0.0489 (11)
C28−0.1560 (4)0.67624 (17)0.2241 (4)0.0535 (11)
C290.1563 (5)0.70297 (18)0.2756 (4)0.0663 (13)
H290.09970.71420.20660.080*
C300.3057 (5)0.72331 (17)0.3196 (4)0.0587 (12)
C310.3612 (6)0.75637 (19)0.2560 (4)0.0783 (15)
H310.30670.76500.18420.094*
C320.4987 (6)0.7771 (2)0.2981 (5)0.0872 (17)
H320.53750.79900.25410.105*
C330.5776 (5)0.7650 (2)0.4060 (5)0.0733 (14)
C340.5267 (5)0.73148 (19)0.4713 (4)0.0706 (14)
H340.58220.72280.54270.085*
C350.3870 (5)0.71047 (17)0.4268 (4)0.0649 (13)
N10.0690 (5)0.63236 (18)0.8272 (4)0.0940 (15)
N20.2709 (4)0.44784 (15)0.2266 (3)0.0749 (12)
N3−0.0361 (3)0.65359 (12)0.2909 (3)0.0519 (9)
N40.1058 (4)0.67119 (13)0.3293 (3)0.0587 (10)
O1−0.1568 (3)0.71531 (11)0.1705 (3)0.0705 (9)
O20.7101 (4)0.78780 (16)0.4427 (3)0.1002 (13)
H20.74110.78320.51060.150*
O30.3414 (4)0.67909 (15)0.4958 (3)0.0928 (12)
H30.25950.66870.46470.139*
O40.1295 (3)0.54163 (11)0.5103 (2)0.0666 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.120 (6)0.175 (7)0.096 (5)0.019 (5)0.013 (4)−0.032 (5)
C20.098 (5)0.142 (6)0.069 (4)−0.001 (4)0.022 (4)−0.030 (4)
C30.114 (6)0.197 (8)0.153 (7)0.006 (5)0.019 (5)−0.095 (6)
C40.121 (5)0.196 (8)0.091 (5)0.065 (5)−0.009 (4)−0.077 (5)
C50.049 (3)0.086 (4)0.056 (3)0.009 (3)0.000 (2)−0.021 (3)
C60.054 (3)0.072 (4)0.074 (3)0.012 (2)0.006 (3)−0.022 (3)
C70.055 (3)0.058 (3)0.064 (3)0.013 (2)−0.003 (2)0.001 (2)
C80.038 (2)0.048 (3)0.050 (3)−0.0026 (19)0.001 (2)0.000 (2)
C90.044 (3)0.050 (3)0.051 (3)0.010 (2)0.002 (2)−0.004 (2)
C100.060 (3)0.079 (4)0.048 (3)0.016 (2)−0.002 (2)−0.006 (3)
C110.055 (3)0.050 (3)0.038 (3)0.001 (2)0.003 (2)0.002 (2)
C120.059 (3)0.060 (3)0.049 (3)0.008 (2)0.002 (2)0.004 (2)
C130.051 (3)0.058 (3)0.057 (3)0.001 (2)0.009 (2)−0.002 (2)
C140.096 (4)0.068 (4)0.090 (4)0.023 (3)0.032 (3)−0.011 (3)
C150.078 (4)0.108 (5)0.139 (5)0.017 (4)0.018 (4)0.001 (4)
C160.118 (6)0.199 (8)0.121 (6)0.016 (5)0.053 (5)0.015 (5)
C170.114 (5)0.110 (5)0.093 (5)0.028 (4)0.037 (4)−0.003 (4)
C180.068 (3)0.080 (4)0.045 (3)0.013 (3)0.008 (2)0.000 (2)
C190.063 (3)0.070 (3)0.051 (3)0.015 (2)0.001 (2)0.010 (2)
C200.045 (3)0.051 (3)0.043 (2)0.000 (2)0.006 (2)0.006 (2)
C210.037 (2)0.049 (3)0.051 (3)−0.0030 (19)0.0008 (19)0.004 (2)
C220.043 (3)0.051 (3)0.048 (2)−0.006 (2)0.000 (2)−0.003 (2)
C230.047 (3)0.068 (3)0.062 (3)−0.007 (2)0.000 (2)0.009 (2)
C240.054 (3)0.078 (4)0.075 (3)−0.017 (2)0.003 (3)0.005 (3)
C250.040 (3)0.087 (4)0.076 (3)−0.007 (3)−0.003 (2)0.006 (3)
C260.048 (3)0.066 (3)0.071 (3)0.006 (2)0.002 (2)0.010 (3)
C270.039 (3)0.049 (3)0.052 (3)−0.001 (2)0.000 (2)0.006 (2)
C280.051 (3)0.051 (3)0.055 (3)0.003 (2)0.006 (2)0.004 (2)
C290.061 (3)0.068 (4)0.063 (3)0.003 (3)0.002 (3)−0.003 (3)
C300.058 (3)0.062 (3)0.053 (3)−0.003 (2)0.007 (2)−0.001 (2)
C310.087 (4)0.085 (4)0.066 (3)−0.012 (3)0.026 (3)0.009 (3)
C320.079 (4)0.102 (5)0.081 (4)−0.039 (3)0.021 (3)−0.010 (3)
C330.052 (3)0.092 (4)0.077 (4)−0.024 (3)0.018 (3)−0.018 (3)
C340.054 (3)0.084 (4)0.071 (3)−0.018 (3)0.012 (3)−0.009 (3)
C350.069 (3)0.055 (3)0.078 (4)−0.009 (2)0.032 (3)0.005 (3)
N10.084 (3)0.123 (4)0.063 (3)0.032 (3)−0.004 (2)−0.031 (3)
N20.083 (3)0.080 (3)0.061 (3)0.027 (2)0.016 (2)−0.002 (2)
N30.037 (2)0.051 (2)0.062 (2)−0.0056 (17)0.0025 (17)0.0110 (18)
N40.053 (2)0.050 (2)0.072 (3)−0.0094 (18)0.015 (2)0.010 (2)
O10.058 (2)0.061 (2)0.084 (2)0.0002 (15)0.0007 (16)0.0266 (18)
O20.070 (2)0.137 (3)0.092 (3)−0.056 (2)0.016 (2)−0.017 (3)
O30.075 (3)0.109 (3)0.081 (2)−0.028 (2)−0.0046 (19)0.027 (2)
O40.078 (2)0.069 (2)0.0468 (19)0.0292 (17)0.0047 (16)0.0023 (16)

Geometric parameters (Å, °)

C1—C21.453 (7)C16—H16B0.9600
C1—H1A0.9600C16—H16C0.9600
C1—H1B0.9600C17—N21.476 (6)
C1—H1C0.9600C17—H17A0.9700
C2—N11.486 (7)C17—H17B0.9700
C2—H2A0.9700C18—C191.374 (6)
C2—H2B0.9700C18—H180.9300
C3—C41.323 (7)C19—C201.386 (5)
C3—H3A0.9600C19—H190.9300
C3—H3B0.9600C20—C211.504 (5)
C3—H3C0.9600C21—N31.496 (5)
C4—N11.434 (6)C21—C221.527 (5)
C4—H4A0.9700C22—C231.366 (5)
C4—H4B0.9700C22—C271.381 (5)
C5—N11.380 (5)C23—C241.384 (6)
C5—C101.388 (6)C23—H230.9300
C5—C61.395 (6)C24—C251.376 (6)
C6—C71.354 (5)C24—H240.9300
C6—H60.9300C25—C261.376 (6)
C7—C81.396 (5)C25—H250.9300
C7—H70.9300C26—C271.388 (5)
C8—C91.375 (5)C26—H260.9300
C8—C211.504 (5)C27—C281.473 (5)
C9—C101.375 (5)C28—O11.231 (5)
C9—O41.377 (4)C28—N31.362 (5)
C10—H100.9300C29—N41.240 (5)
C11—C201.370 (5)C29—C301.482 (6)
C11—O41.371 (4)C29—H290.9300
C11—C121.380 (5)C30—C311.365 (6)
C12—C131.391 (5)C30—C351.389 (6)
C12—H120.9300C31—C321.388 (6)
C13—N21.374 (5)C31—H310.9300
C13—C181.413 (6)C32—C331.385 (7)
C14—N21.465 (6)C32—H320.9300
C14—C151.490 (7)C33—O21.363 (5)
C14—H14A0.9700C33—C341.364 (6)
C14—H14B0.9700C34—C351.413 (6)
C15—H15A0.9600C34—H340.9300
C15—H15B0.9600C35—O31.335 (5)
C15—H15C0.9600N3—N41.388 (4)
C16—C171.458 (7)O2—H20.8200
C16—H16A0.9600O3—H30.8200
C2—C1—H1A109.5N2—C17—H17B108.8
C2—C1—H1B109.5H17A—C17—H17B107.7
H1A—C1—H1B109.5C19—C18—C13120.5 (4)
C2—C1—H1C109.5C19—C18—H18119.8
H1A—C1—H1C109.5C13—C18—H18119.8
H1B—C1—H1C109.5C18—C19—C20122.9 (4)
C1—C2—N1108.6 (5)C18—C19—H19118.5
C1—C2—H2A110.0C20—C19—H19118.5
N1—C2—H2A110.0C11—C20—C19116.3 (4)
C1—C2—H2B110.0C11—C20—C21122.3 (4)
N1—C2—H2B110.0C19—C20—C21121.3 (4)
H2A—C2—H2B108.3N3—C21—C8110.5 (3)
C4—C3—H3A109.5N3—C21—C20109.5 (3)
C4—C3—H3B109.5C8—C21—C20110.6 (3)
H3A—C3—H3B109.5N3—C21—C2299.2 (3)
C4—C3—H3C109.5C8—C21—C22111.6 (3)
H3A—C3—H3C109.5C20—C21—C22114.9 (3)
H3B—C3—H3C109.5C23—C22—C27121.7 (4)
C3—C4—N1126.8 (6)C23—C22—C21127.8 (4)
C3—C4—H4A105.6C27—C22—C21110.5 (3)
N1—C4—H4A105.6C22—C23—C24117.1 (4)
C3—C4—H4B105.6C22—C23—H23121.5
N1—C4—H4B105.6C24—C23—H23121.5
H4A—C4—H4B106.1C25—C24—C23121.9 (4)
N1—C5—C10121.3 (4)C25—C24—H24119.0
N1—C5—C6122.4 (4)C23—C24—H24119.0
C10—C5—C6116.3 (4)C26—C25—C24120.8 (4)
C7—C6—C5121.4 (4)C26—C25—H25119.6
C7—C6—H6119.3C24—C25—H25119.6
C5—C6—H6119.3C25—C26—C27117.5 (4)
C6—C7—C8122.9 (4)C25—C26—H26121.2
C6—C7—H7118.6C27—C26—H26121.2
C8—C7—H7118.6C22—C27—C26120.9 (4)
C9—C8—C7115.5 (4)C22—C27—C28109.7 (4)
C9—C8—C21122.2 (4)C26—C27—C28129.3 (4)
C7—C8—C21122.4 (4)O1—C28—N3126.1 (4)
C8—C9—C10122.5 (4)O1—C28—C27128.4 (4)
C8—C9—O4122.8 (4)N3—C28—C27105.4 (4)
C10—C9—O4114.6 (4)N4—C29—C30121.0 (4)
C9—C10—C5121.4 (4)N4—C29—H29119.5
C9—C10—H10119.3C30—C29—H29119.5
C5—C10—H10119.3C31—C30—C35119.9 (4)
C20—C11—O4123.0 (4)C31—C30—C29119.7 (4)
C20—C11—C12122.4 (4)C35—C30—C29120.4 (4)
O4—C11—C12114.5 (4)C30—C31—C32120.2 (5)
C11—C12—C13121.6 (4)C30—C31—H31119.9
C11—C12—H12119.2C32—C31—H31119.9
C13—C12—H12119.2C33—C32—C31119.6 (5)
N2—C13—C12122.4 (4)C33—C32—H32120.2
N2—C13—C18121.4 (4)C31—C32—H32120.2
C12—C13—C18116.2 (4)O2—C33—C34121.9 (5)
N2—C14—C15114.0 (5)O2—C33—C32116.2 (5)
N2—C14—H14A108.8C34—C33—C32121.9 (4)
C15—C14—H14A108.8C33—C34—C35117.8 (4)
N2—C14—H14B108.8C33—C34—H34121.1
C15—C14—H14B108.8C35—C34—H34121.1
H14A—C14—H14B107.7O3—C35—C30124.3 (4)
C14—C15—H15A109.5O3—C35—C34115.0 (4)
C14—C15—H15B109.5C30—C35—C34120.7 (4)
H15A—C15—H15B109.5C5—N1—C4121.0 (5)
C14—C15—H15C109.5C5—N1—C2120.4 (4)
H15A—C15—H15C109.5C4—N1—C2118.4 (4)
H15B—C15—H15C109.5C13—N2—C14119.9 (4)
C17—C16—H16A109.5C13—N2—C17121.9 (4)
C17—C16—H16B109.5C14—N2—C17117.9 (4)
H16A—C16—H16B109.5C28—N3—N4129.9 (3)
C17—C16—H16C109.5C28—N3—C21115.1 (3)
H16A—C16—H16C109.5N4—N3—C21113.9 (3)
H16B—C16—H16C109.5C29—N4—N3121.3 (4)
C16—C17—N2114.0 (5)C33—O2—H2109.5
C16—C17—H17A108.8C35—O3—H3109.5
N2—C17—H17A108.8C11—O4—C9118.5 (3)
C16—C17—H17B108.8
N1—C5—C6—C7−177.1 (4)C25—C26—C27—C28−176.9 (4)
C10—C5—C6—C71.8 (7)C22—C27—C28—O1179.4 (4)
C5—C6—C7—C8−1.2 (7)C26—C27—C28—O1−3.2 (8)
C6—C7—C8—C9−0.3 (6)C22—C27—C28—N3−0.6 (5)
C6—C7—C8—C21179.8 (4)C26—C27—C28—N3176.8 (4)
C7—C8—C9—C101.1 (6)N4—C29—C30—C31176.7 (4)
C21—C8—C9—C10−179.0 (4)N4—C29—C30—C35−5.8 (7)
C7—C8—C9—O4−179.2 (4)C35—C30—C31—C320.1 (7)
C21—C8—C9—O40.7 (6)C29—C30—C31—C32177.6 (5)
C8—C9—C10—C5−0.4 (7)C30—C31—C32—C33−1.6 (8)
O4—C9—C10—C5179.8 (4)C31—C32—C33—O2−178.3 (5)
N1—C5—C10—C9177.9 (4)C31—C32—C33—C342.7 (8)
C6—C5—C10—C9−1.1 (7)O2—C33—C34—C35178.8 (4)
C20—C11—C12—C13−0.2 (7)C32—C33—C34—C35−2.2 (8)
O4—C11—C12—C13179.5 (4)C31—C30—C35—O3179.1 (5)
C11—C12—C13—N2−179.5 (4)C29—C30—C35—O31.6 (7)
C11—C12—C13—C180.9 (6)C31—C30—C35—C340.3 (7)
N2—C13—C18—C19179.8 (4)C29—C30—C35—C34−177.1 (4)
C12—C13—C18—C19−0.7 (7)C33—C34—C35—O3−178.1 (4)
C13—C18—C19—C20−0.3 (7)C33—C34—C35—C300.7 (7)
O4—C11—C20—C19179.6 (4)C10—C5—N1—C4−179.5 (5)
C12—C11—C20—C19−0.8 (6)C6—C5—N1—C4−0.6 (8)
O4—C11—C20—C212.7 (6)C10—C5—N1—C25.7 (7)
C12—C11—C20—C21−177.6 (4)C6—C5—N1—C2−175.4 (5)
C18—C19—C20—C111.0 (6)C3—C4—N1—C5−145.1 (8)
C18—C19—C20—C21177.9 (4)C3—C4—N1—C229.7 (12)
C9—C8—C21—N3−126.4 (4)C1—C2—N1—C578.6 (6)
C7—C8—C21—N353.5 (5)C1—C2—N1—C4−96.3 (7)
C9—C8—C21—C20−5.0 (5)C12—C13—N2—C144.7 (7)
C7—C8—C21—C20174.9 (4)C18—C13—N2—C14−175.8 (4)
C9—C8—C21—C22124.3 (4)C12—C13—N2—C17179.7 (5)
C7—C8—C21—C22−55.8 (5)C18—C13—N2—C17−0.8 (7)
C11—C20—C21—N3125.3 (4)C15—C14—N2—C13−83.1 (6)
C19—C20—C21—N3−51.4 (5)C15—C14—N2—C17101.7 (6)
C11—C20—C21—C83.4 (5)C16—C17—N2—C1379.7 (7)
C19—C20—C21—C8−173.3 (4)C16—C17—N2—C14−105.3 (6)
C11—C20—C21—C22−124.1 (4)O1—C28—N3—N411.1 (7)
C19—C20—C21—C2259.2 (5)C27—C28—N3—N4−168.9 (4)
N3—C21—C22—C23179.7 (4)O1—C28—N3—C21178.8 (4)
C8—C21—C22—C23−63.9 (6)C27—C28—N3—C21−1.2 (5)
C20—C21—C22—C2363.1 (6)C8—C21—N3—C28−115.0 (4)
N3—C21—C22—C27−2.5 (4)C20—C21—N3—C28122.9 (4)
C8—C21—C22—C27113.9 (4)C22—C21—N3—C282.2 (4)
C20—C21—C22—C27−119.1 (4)C8—C21—N3—N454.7 (4)
C27—C22—C23—C24−2.9 (7)C20—C21—N3—N4−67.4 (4)
C21—C22—C23—C24174.6 (4)C22—C21—N3—N4171.9 (3)
C22—C23—C24—C251.0 (7)C30—C29—N4—N3177.2 (4)
C23—C24—C25—C261.6 (8)C28—N3—N4—C29−27.2 (7)
C24—C25—C26—C27−2.2 (7)C21—N3—N4—C29165.0 (4)
C23—C22—C27—C262.3 (7)C20—C11—O4—C9−7.5 (6)
C21—C22—C27—C26−175.6 (4)C12—C11—O4—C9172.8 (4)
C23—C22—C27—C28180.0 (4)C8—C9—O4—C115.7 (6)
C21—C22—C27—C282.1 (5)C10—C9—O4—C11−174.5 (4)
C25—C26—C27—C220.3 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2147).

References

  • Bruker (1998). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464. [PMC free article] [PubMed]
  • Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc.127, 10107–10111. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645. [PMC free article] [PubMed]
  • Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem.46, 1538–1540. [PubMed]
  • Xu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876. [PMC free article] [PubMed]
  • Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography