PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1455.
Published online 2010 May 26. doi:  10.1107/S1600536810018842
PMCID: PMC2979409

2-(4-Hydroxy­phen­yl)acetic acid–4,4′-bipyridine (1/1)

Abstract

In the acid mol­ecule of the title complex, C10H8N2·C8H8O3, the acetyl C—C—C—O torsion angle is −32.1 (3)°, and in the mol­ecule of the base, the dihedral angle between the two pyridine rings is 23.41 (10)°. In the crystal structure, inter­molecular O—H(...)N hydrogen bonds link the acid and the base mol­ecules into a one-dimensional triple-helix framework extended along the b axis.

Related literature

For related functional complexes, see: Han et al. (2009 [triangle]). For hydrogen-bond motif structures, see: Tomura & Yamashita (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1455-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·C8H8O3
  • M r = 308.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1455-efi1.jpg
  • a = 25.3578 (6) Å
  • b = 10.2305 (2) Å
  • c = 14.2546 (4) Å
  • β = 122.321 (2)°
  • V = 3125.03 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.25 × 0.14 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.984, T max = 0.994
  • 24334 measured reflections
  • 3650 independent reflections
  • 2128 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.139
  • S = 1.06
  • 3650 reflections
  • 214 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018842/pv2281sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018842/pv2281Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The design and synthesis of coordination complexes have absorbed considerable attention due to their diverse structures with 4,4'-bipyridine linker (Han et al., 2009). Moreover, hydrogen bond can also play a role in forming motif structures (Tomura & Yamashita, 2001). We have designed the title complex in an attempt to prepare crystaline magnetic materials and report its crystal structure in this paper.

The structure of the title complex is shown in Fig. 1, which reveals that it contains 2-(4-hydroxyphenyl)acetic acid and 4,4'-bipyridine in a ratio of 1:1. In the molecule of 2-(4-hydroxyphenyl)acetic acid, the acetyl torsion angle C(1)—C(7)—C(8)—O(2) is -32.1 (3) °, and in the molecule of 4,4'-bipyridine, the dihedral angle between the two pyridine rings is 23.41 (10) °. The two molecules arranged in the crystal at regular intervals with two O—H···N hydrogen bonds. The end to end hydrogen-bonding interactions lead to the formation of a one-dimensional triple-helix structure framework along the b-axis, Fig 2. Between adjacent triple-helix chains there exist weak π—π interactions.

Experimental

2-(4-hydroxyphenyl)acetic acid (0.152 g, 1 mmol) and 4,4'-bipyridine (0.156 g, 1 mmol) were added to a mixed solution of ethanol (20 ml) and water (10 ml) with Cu(SO4)2 (0.127 g, 0.5 mmol) under stirred conditions at room temperature. A few minutes later a lot of blue deposit appeared. After the deposit was filtered out, a light blue solution was kept for evaporating. Colorless single crystals of the title complex were obtained about 19 days later.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å for methylene and aryl H-atoms, respectively and Uiso(H) = 1.2Ueq(C). The H atoms bonded to O atoms were located in a difference Fourier map and refined without restraints.

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The packing plot of the complex showing triple-helix chains.

Crystal data

C10H8N2·C8H8O3F(000) = 1296
Mr = 308.33Dx = 1.311 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3274 reflections
a = 25.3578 (6) Åθ = 1.9–27.7°
b = 10.2305 (2) ŵ = 0.09 mm1
c = 14.2546 (4) ÅT = 296 K
β = 122.321 (2)°Block, colourless
V = 3125.03 (15) Å30.25 × 0.14 × 0.06 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer3650 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] & ω scansθmax = 27.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −32→32
Tmin = 0.984, Tmax = 0.994k = −13→13
24334 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.065P)2 + 0.2994P] where P = (Fo2 + 2Fc2)/3
3650 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.54789 (7)0.32235 (16)0.04851 (15)0.0637 (5)
C20.54036 (7)0.28856 (15)0.13430 (17)0.0674 (5)
H2A0.52110.20980.13080.081*
C30.56064 (8)0.36856 (15)0.22505 (16)0.0624 (5)
H3A0.55540.34310.28220.075*
C40.58890 (7)0.48680 (14)0.23132 (14)0.0540 (4)
C50.59659 (7)0.52233 (14)0.14611 (14)0.0555 (4)
H5A0.61560.60140.14940.067*
C60.57611 (8)0.44072 (16)0.05596 (15)0.0618 (4)
H6A0.58140.4660−0.00110.074*
C70.52498 (9)0.23409 (19)−0.05088 (17)0.0888 (7)
H7A0.48260.2074−0.07650.107*
H7B0.52350.2843−0.11000.107*
C80.56331 (9)0.11343 (17)−0.03167 (16)0.0686 (5)
C90.27818 (7)0.03470 (14)0.13722 (13)0.0531 (4)
C100.24522 (9)−0.08224 (16)0.10478 (15)0.0668 (5)
H10A0.2019−0.08210.06800.080*
C110.27717 (11)−0.19771 (17)0.12756 (17)0.0777 (6)
H11A0.2543−0.27490.10670.093*
C120.37044 (10)−0.09378 (19)0.20793 (17)0.0780 (6)
H12A0.4136−0.09680.24230.094*
C130.34242 (8)0.02609 (17)0.19086 (15)0.0669 (5)
H13A0.36660.10150.21530.080*
C140.24634 (7)0.16282 (14)0.11616 (13)0.0510 (4)
C150.18450 (8)0.17940 (15)0.03144 (14)0.0600 (4)
H15A0.16210.1097−0.01470.072*
C160.15638 (8)0.29964 (16)0.01587 (15)0.0656 (5)
H16A0.11440.3078−0.03940.079*
C170.24598 (9)0.38940 (16)0.15596 (15)0.0657 (5)
H17A0.26780.46190.19830.079*
C180.27730 (8)0.27190 (15)0.17954 (14)0.0616 (4)
H18A0.31880.26600.23750.074*
N10.33881 (9)−0.20646 (15)0.17762 (14)0.0809 (5)
N20.18645 (7)0.40479 (13)0.07623 (12)0.0636 (4)
O10.54120 (7)0.01483 (14)−0.08188 (14)0.1052 (6)
O20.62304 (6)0.12757 (12)0.04163 (12)0.0847 (5)
H2O0.6456 (10)0.046 (2)0.0532 (17)0.102*
O30.60808 (6)0.56199 (12)0.32305 (11)0.0733 (4)
H3O0.6234 (10)0.635 (2)0.3150 (17)0.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0446 (9)0.0533 (9)0.0674 (12)0.0112 (7)0.0128 (8)−0.0090 (8)
C20.0489 (10)0.0440 (9)0.0873 (13)−0.0055 (7)0.0218 (9)−0.0050 (9)
C30.0525 (10)0.0557 (9)0.0743 (12)−0.0072 (7)0.0308 (9)0.0034 (8)
C40.0497 (9)0.0439 (8)0.0632 (11)−0.0009 (6)0.0266 (8)−0.0024 (7)
C50.0510 (9)0.0436 (8)0.0665 (11)−0.0021 (6)0.0279 (8)0.0006 (7)
C60.0531 (10)0.0616 (10)0.0626 (11)0.0104 (7)0.0255 (9)0.0015 (8)
C70.0684 (13)0.0733 (12)0.0792 (13)0.0164 (10)0.0090 (10)−0.0249 (10)
C80.0630 (12)0.0584 (10)0.0692 (12)0.0031 (8)0.0252 (10)−0.0127 (9)
C90.0596 (10)0.0485 (8)0.0501 (9)0.0060 (7)0.0286 (8)0.0056 (7)
C100.0709 (12)0.0541 (10)0.0711 (12)0.0042 (8)0.0350 (10)0.0022 (8)
C110.0991 (16)0.0501 (10)0.0807 (13)0.0072 (10)0.0461 (12)0.0066 (9)
C120.0722 (13)0.0720 (13)0.0792 (13)0.0231 (10)0.0333 (11)0.0192 (10)
C130.0621 (11)0.0595 (10)0.0687 (12)0.0107 (8)0.0280 (10)0.0110 (8)
C140.0547 (9)0.0484 (8)0.0533 (9)0.0038 (7)0.0311 (8)0.0066 (7)
C150.0599 (10)0.0501 (9)0.0636 (11)0.0012 (7)0.0288 (9)−0.0005 (8)
C160.0555 (10)0.0618 (10)0.0669 (11)0.0091 (8)0.0243 (9)0.0035 (9)
C170.0690 (12)0.0540 (9)0.0680 (11)0.0023 (8)0.0325 (10)−0.0062 (8)
C180.0562 (10)0.0567 (9)0.0624 (11)0.0022 (7)0.0253 (9)−0.0027 (8)
N10.1009 (14)0.0620 (10)0.0767 (11)0.0285 (9)0.0454 (10)0.0179 (8)
N20.0656 (10)0.0546 (8)0.0665 (9)0.0094 (7)0.0327 (8)−0.0004 (7)
O10.0818 (10)0.0680 (9)0.1354 (14)−0.0077 (7)0.0376 (9)−0.0416 (9)
O20.0640 (9)0.0596 (7)0.0937 (10)0.0124 (6)0.0175 (8)−0.0179 (7)
O30.0921 (10)0.0576 (7)0.0738 (8)−0.0186 (6)0.0467 (8)−0.0124 (6)

Geometric parameters (Å, °)

C1—C21.379 (3)C10—C111.370 (2)
C1—C61.382 (2)C10—H10A0.9300
C1—C71.510 (2)C11—N11.330 (2)
C2—C31.377 (2)C11—H11A0.9300
C2—H2A0.9300C12—N11.337 (3)
C3—C41.384 (2)C12—C131.372 (2)
C3—H3A0.9300C12—H12A0.9300
C4—O31.3631 (19)C13—H13A0.9300
C4—C51.378 (2)C14—C181.385 (2)
C5—C61.380 (2)C14—C151.386 (2)
C5—H5A0.9300C15—C161.379 (2)
C6—H6A0.9300C15—H15A0.9300
C7—C81.503 (2)C16—N21.333 (2)
C7—H7A0.9700C16—H16A0.9300
C7—H7B0.9700C17—N21.327 (2)
C8—O11.190 (2)C17—C181.380 (2)
C8—O21.309 (2)C17—H17A0.9300
C9—C131.384 (2)C18—H18A0.9300
C9—C101.389 (2)O2—H2O0.97 (2)
C9—C141.484 (2)O3—H3O0.87 (2)
C2—C1—C6117.60 (16)C11—C10—H10A120.3
C2—C1—C7121.07 (18)C9—C10—H10A120.3
C6—C1—C7121.33 (19)N1—C11—C10124.19 (18)
C3—C2—C1121.66 (16)N1—C11—H11A117.9
C3—C2—H2A119.2C10—C11—H11A117.9
C1—C2—H2A119.2N1—C12—C13123.29 (19)
C2—C3—C4120.03 (17)N1—C12—H12A118.4
C2—C3—H3A120.0C13—C12—H12A118.4
C4—C3—H3A120.0C12—C13—C9119.99 (17)
O3—C4—C5123.41 (14)C12—C13—H13A120.0
O3—C4—C3117.52 (16)C9—C13—H13A120.0
C5—C4—C3119.07 (15)C18—C14—C15116.89 (14)
C4—C5—C6120.07 (14)C18—C14—C9121.49 (14)
C4—C5—H5A120.0C15—C14—C9121.61 (14)
C6—C5—H5A120.0C16—C15—C14119.74 (16)
C5—C6—C1121.56 (17)C16—C15—H15A120.1
C5—C6—H6A119.2C14—C15—H15A120.1
C1—C6—H6A119.2N2—C16—C15123.21 (16)
C8—C7—C1115.68 (15)N2—C16—H16A118.4
C8—C7—H7A108.4C15—C16—H16A118.4
C1—C7—H7A108.4N2—C17—C18123.72 (16)
C8—C7—H7B108.4N2—C17—H17A118.1
C1—C7—H7B108.4C18—C17—H17A118.1
H7A—C7—H7B107.4C17—C18—C14119.42 (16)
O1—C8—O2123.08 (17)C17—C18—H18A120.3
O1—C8—C7122.41 (17)C14—C18—H18A120.3
O2—C8—C7114.47 (15)C11—N1—C12116.44 (15)
C13—C9—C10116.75 (15)C17—N2—C16116.96 (14)
C13—C9—C14121.38 (14)C8—O2—H2O111.5 (12)
C10—C9—C14121.87 (15)C4—O3—H3O108.1 (14)
C11—C10—C9119.30 (18)
C6—C1—C2—C3−0.7 (2)N1—C12—C13—C9−1.8 (3)
C7—C1—C2—C3−179.55 (15)C10—C9—C13—C121.1 (3)
C1—C2—C3—C40.6 (2)C14—C9—C13—C12−179.22 (16)
C2—C3—C4—O3−179.97 (15)C13—C9—C14—C18−23.0 (2)
C2—C3—C4—C5−0.3 (2)C10—C9—C14—C18156.71 (16)
O3—C4—C5—C6179.78 (14)C13—C9—C14—C15156.28 (16)
C3—C4—C5—C60.2 (2)C10—C9—C14—C15−24.1 (2)
C4—C5—C6—C1−0.2 (2)C18—C14—C15—C16−1.8 (2)
C2—C1—C6—C50.5 (2)C9—C14—C15—C16178.93 (15)
C7—C1—C6—C5179.37 (15)C14—C15—C16—N22.6 (3)
C2—C1—C7—C8−74.3 (2)N2—C17—C18—C141.4 (3)
C6—C1—C7—C8106.8 (2)C15—C14—C18—C17−0.1 (2)
C1—C7—C8—O1150.2 (2)C9—C14—C18—C17179.18 (15)
C1—C7—C8—O2−32.1 (3)C10—C11—N1—C120.9 (3)
C13—C9—C10—C110.4 (3)C13—C12—N1—C110.8 (3)
C14—C9—C10—C11−179.26 (16)C18—C17—N2—C16−0.7 (3)
C9—C10—C11—N1−1.5 (3)C15—C16—N2—C17−1.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···N2i0.97 (2)1.71 (2)2.679 (2)179 (2)
O3—H3O···N1ii0.87 (2)1.86 (2)2.728 (2)171 (2)

Symmetry codes: (i) x+1/2, y−1/2, z; (ii) −x+1, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2281).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, L., Zhou, Y., Wang, X. T., Li, X. & Tong, M. L. (2009). J. Mol. Struct.923, 24–27.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tomura, M. & Yamashita, Y. (2001). Chem. Lett.30, 532–533.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography