PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1457–o1458.
Published online 2010 May 26. doi:  10.1107/S1600536810018878
PMCID: PMC2979404

Ethyl 2-{3-[(2-chloro-1,3-thia­zol-5-yl)meth­yl]-4-nitro­imino-1,3,5-triazinan-1-yl}acetate

Abstract

In the title compound, C11H15ClN6O4S, which belongs to the neonicotinoid class of insecticidally active heterocyclic compounds, the six-membered triazine ring adopts an opened envolope conformation. The planar nitro imine group [dihedral angle between nitro and imine groups = 1.07 (7)°] and the thia­zole ring are oriented at a dihedral angle of 69.62 (8)°. A classical intra­molecular N—H(...)O hydrogen bond is found in the mol­ecular structure. Moreover, one classical inter­molecular N—H(...)N and four non-classical C—H(...)O and C—H(...)N hydrogen bonds are also present in the crystal structure. Besides inter­molecular hydrogen bonds, the Cl atom forms an inter­molecular short contact [3.020 (2) Å] with one of the nitro O atoms.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Kagabu (1996 [triangle]); Kagabu et al. (2005 [triangle]); Tian et al. (2007 [triangle]); Tomizawa et al. (2000 [triangle]); Tomizawa & Yamamoto (1993 [triangle]); Zhang et al. (2004 [triangle]). For halogen bonding, see: Riley & Merz (2007 [triangle]). For the synthesis of the title compound, see: Maienfisch et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1457-scheme1.jpg

Experimental

Crystal data

  • C11H15ClN6O4S
  • M r = 362.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1457-efi1.jpg
  • a = 8.5066 (6) Å
  • b = 9.1114 (7) Å
  • c = 10.9071 (8) Å
  • α = 100.488 (2)°
  • β = 98.416 (3)°
  • γ = 101.281 (3)°
  • V = 800.55 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 298 K
  • 0.40 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.857, T max = 0.925
  • 5350 measured reflections
  • 3259 independent reflections
  • 2670 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.05
  • 3259 reflections
  • 212 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018878/rk2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018878/rk2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Innovation Program of Shanghai Municipal Education Commission (Ssd08013 and 09YZ157) and the Leading Academic Discipline Project of Shanghai Normal University (DZL808). We are also grateful for the support from the Key Scientific and Technological Project of Shanghai Science and Technology Commission (0939191200).

supplementary crystallographic information

Comment

Neonicotinoid compounds (Tomizawa & Yamamoto, 1993; Kagabu, 1996; Tomizawa et al., 2000) have received much attention on their applications as insecticide (Zhang et al., 2004; Kagabu et al., 2005; Tian et al., 2007). We report here the molecular and crystal structures of the title compound.

The molecular structure of title compound, C11H15ClN6O4S, is depicted on Fig.1. The triazine moiety exhibits an opened envolope conformation with N1 out of the envolope plan defined by C5, N3, C7, N2 and C6. The dihedral angle between the thiazole ring and triazine envolope plan is 75.63 (7)°. The planar nitroimine–group and the thiazole ring are oriented the dihedral angle of 69.62 (8)°. The large discrepancy between (O4—N5···N4 115.65 (17)°) and (O3—N5···N4 123.84 (16)°) bond angles attributes to the hydrogen bond effect on O4 and O3 - look the Table 1. Another interesting structure feature that should be mentioned is that the bond lengths (C7—N2 1.340 (2)Å) and (C7—N3 1.329 (2)Å) are between the standard (C—N 1.47Å) single bond and (C═N 1.26Å) double bond, clearly showing the conjugated effect of the nirtoimine. The C7—N4 bond length is as long as to 1.357 (2)Å, due to being linked with a strong electron–attracting nitro–group. Moreover, except intermolecular hydrogen bonding, the crystal structure is further stabilized by the so–called halogen bonding (Riley & Merz, 2007), due to short intermolecular contact of Cl1—O4i with a distance of 3.020 (2)Å and an angle close to 180° (C11—Cl1···O4i 178.1 (1)°). Symmetry code: (i) 1-x,1-y,-z).

Experimental

The title compound was prepared by the literature method (Maienfisch et al., (2001). It was purified by silica gel chromatography using ethyl acetate and petroleum ether in the ratio of 1:1, as the flush to afford. This compound was obtained as white crystals, yield 46.7%, 1H NMR(CDCl3, 400 Hz): 9.51 (1H, s, NH), 7.44 (1H, s, thiazole—H), 4.61 (2H,s,CH2—thiazole), 4.48–4.49(4H, d, J = 5.2 Hz, triazine—4H), 4.21–4.15 (2H, m, OCH2), 3.32 (2H, s, CHC═O) 1.29–1.26 (3H, t, J = 7.2 Hz, CH3); IR(potassium bromide, cm-1) 3288(N—H), 3000 (thiazole), 1730 (C═O) 1587 (C═N), 1398 (NO2), 1224 (C—O—C), 1105 (C—N), Anal. calcd for C11H15ClN6O4S: C 36.42, H 4.17, N 23.16; found C 36.40, H 4.23, N 23.19. ESI–MS m/z: 363.8.

Refinement

H atoms bonded to C atoms were positioned geometrically [C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl)] and refined in riding modes with Uiso(H) = 1.2Ueq(C) for aromatic and methylene; Uiso(H) = 1.5U~eq~(C) for methyl. H atom bonded to N atom was found from Fourier difference maps and refined with the constraint Uiso(H) = 1.2Ueq(N), but coordinates refined freely.

Figures

Fig. 1.
The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bond is marked by dashed line. ...

Crystal data

C11H15ClN6O4SZ = 2
Mr = 362.81F(000) = 376
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Melting point: 449 K
a = 8.5066 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1114 (7) ÅCell parameters from 2512 reflections
c = 10.9071 (8) Åθ = 2.3–28.2°
α = 100.488 (2)°µ = 0.40 mm1
β = 98.416 (3)°T = 298 K
γ = 101.281 (3)°Block, colourless
V = 800.55 (10) Å30.40 × 0.23 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3259 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2670 reflections with I > 2σ(I)
graphiteRint = 0.075
Detector resolution: 1.57 × 0.49 mm pixels mm-1θmax = 26.5°, θmin = 1.9°
0.3° wide ω scansh = −10→9
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −10→11
Tmin = 0.857, Tmax = 0.925l = −13→12
5350 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0598P)2 + 0.0779P] where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.31 e Å3
9 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0095 (3)0.7149 (2)0.26414 (19)0.0444 (5)
H1A0.08800.70300.23090.053*
H1B−0.07510.75740.20540.053*
C2−0.1049 (2)0.5590 (2)0.2702 (2)0.0454 (5)
C3−0.2096 (4)0.3054 (3)0.1509 (3)0.0701 (7)
H3C−0.31890.30310.16740.084*
H3B−0.15260.26050.21280.084*
C4−0.2173 (5)0.2185 (3)0.0216 (3)0.0943 (11)
H4A−0.26470.2692−0.03910.141*
H4B−0.28310.11690.01050.141*
H4C−0.10910.21260.00920.141*
C50.1108 (3)0.9754 (2)0.3748 (2)0.0485 (5)
H5A0.12251.04690.45490.058*
H5B0.03971.00590.31080.058*
C60.1510 (2)0.7783 (2)0.47718 (18)0.0405 (4)
H6A0.10790.67340.48250.049*
H6B0.16190.84350.56030.049*
C70.3648 (2)0.88803 (19)0.36999 (17)0.0337 (4)
C80.4008 (2)0.6726 (2)0.46817 (19)0.0408 (4)
H8A0.37750.64400.54620.049*
H8B0.51740.71460.48050.049*
C90.3537 (2)0.5325 (2)0.36264 (18)0.0399 (4)
C100.2576 (3)0.3953 (2)0.3607 (2)0.0468 (5)
H100.21130.37680.43020.056*
C110.3072 (3)0.3403 (2)0.1709 (2)0.0527 (6)
Cl10.30601 (10)0.23735 (8)0.02224 (6)0.0779 (3)
N10.03775 (19)0.82249 (18)0.38653 (16)0.0408 (4)
N20.31341 (19)0.79068 (17)0.44198 (15)0.0367 (4)
N30.2716 (2)0.98200 (18)0.33909 (17)0.0393 (4)
H3A0.306 (3)1.039 (3)0.297 (2)0.047*
N40.50886 (19)0.87424 (18)0.33519 (16)0.0402 (4)
N50.5757 (2)0.97002 (19)0.26754 (16)0.0430 (4)
N60.2308 (2)0.28347 (19)0.25118 (19)0.0544 (5)
O1−0.1559 (2)0.52487 (19)0.36034 (15)0.0659 (5)
O2−0.1227 (2)0.46316 (17)0.16030 (15)0.0614 (4)
O30.5158 (2)1.0752 (2)0.23700 (19)0.0671 (5)
O40.70673 (19)0.95104 (19)0.23875 (17)0.0607 (4)
S10.41711 (8)0.52681 (6)0.21876 (5)0.0532 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0449 (11)0.0457 (11)0.0389 (10)0.0019 (9)0.0037 (9)0.0122 (9)
C20.0434 (11)0.0495 (12)0.0386 (11)0.0005 (9)0.0066 (9)0.0095 (9)
C30.0903 (19)0.0483 (12)0.0592 (14)−0.0107 (12)0.0183 (13)0.0055 (11)
C40.144 (3)0.0561 (15)0.0660 (17)−0.0045 (17)0.0236 (19)−0.0031 (12)
C50.0451 (11)0.0377 (10)0.0671 (14)0.0144 (8)0.0191 (10)0.0106 (10)
C60.0430 (10)0.0429 (10)0.0331 (10)0.0067 (8)0.0087 (8)0.0037 (8)
C70.0379 (9)0.0256 (8)0.0336 (9)0.0057 (7)0.0040 (7)−0.0001 (7)
C80.0473 (11)0.0370 (10)0.0389 (10)0.0130 (8)0.0030 (8)0.0106 (8)
C90.0479 (11)0.0363 (10)0.0398 (10)0.0176 (8)0.0065 (8)0.0118 (8)
C100.0590 (13)0.0391 (11)0.0460 (12)0.0163 (9)0.0105 (10)0.0122 (9)
C110.0731 (15)0.0436 (11)0.0427 (11)0.0274 (10)0.0013 (11)0.0048 (10)
Cl10.1162 (6)0.0694 (4)0.0455 (3)0.0420 (4)0.0031 (3)−0.0065 (3)
N10.0398 (9)0.0382 (8)0.0447 (9)0.0101 (7)0.0090 (7)0.0074 (7)
N20.0405 (8)0.0318 (8)0.0385 (8)0.0098 (6)0.0071 (7)0.0080 (7)
N30.0416 (9)0.0306 (8)0.0499 (10)0.0112 (6)0.0133 (7)0.0124 (7)
N40.0375 (8)0.0364 (8)0.0468 (9)0.0082 (6)0.0106 (7)0.0075 (7)
N50.0401 (9)0.0421 (9)0.0407 (9)0.0023 (7)0.0079 (7)0.0009 (7)
N60.0704 (12)0.0356 (9)0.0545 (11)0.0156 (8)0.0039 (10)0.0053 (8)
O10.0766 (11)0.0650 (10)0.0453 (9)−0.0146 (8)0.0207 (8)0.0100 (8)
O20.0806 (11)0.0484 (9)0.0455 (9)−0.0096 (8)0.0202 (8)0.0055 (7)
O30.0612 (10)0.0647 (11)0.0929 (14)0.0183 (8)0.0302 (9)0.0448 (10)
O40.0468 (9)0.0706 (11)0.0654 (10)0.0116 (7)0.0249 (8)0.0070 (8)
S10.0731 (4)0.0452 (3)0.0456 (3)0.0181 (3)0.0187 (3)0.0098 (2)

Geometric parameters (Å, °)

C1—N11.455 (3)C6—H6B0.9700
C1—C21.510 (3)C7—N31.329 (2)
C1—H1A0.9700C7—N21.340 (2)
C1—H1B0.9700C7—N41.357 (2)
C2—O11.198 (2)C8—N21.468 (2)
C2—O21.318 (3)C8—C91.498 (3)
C3—O21.460 (3)C8—H8A0.9700
C3—C41.472 (4)C8—H8B0.9700
C3—H3C0.9700C9—C101.348 (3)
C3—H3B0.9700C9—S11.728 (2)
C4—H4A0.9600C10—N61.380 (3)
C4—H4B0.9600C10—H100.9300
C4—H4C0.9600C11—N61.287 (3)
C5—N11.447 (2)C11—S11.717 (2)
C5—N31.469 (3)C11—Cl11.717 (2)
C5—H5A0.9700N3—H3A0.79 (2)
C5—H5B0.9700N4—N51.339 (2)
C6—N11.444 (3)N5—O41.237 (2)
C6—N21.476 (2)N5—O31.243 (2)
C6—H6A0.9700
N1—C1—C2113.48 (16)N3—C7—N4127.89 (17)
N1—C1—H1A108.9N2—C7—N4113.62 (16)
C2—C1—H1A108.9N2—C8—C9112.19 (16)
N1—C1—H1B108.9N2—C8—H8A109.2
C2—C1—H1B108.9C9—C8—H8A109.2
H1A—C1—H1B107.7N2—C8—H8B109.2
O1—C2—O2124.32 (19)C9—C8—H8B109.2
O1—C2—C1126.2 (2)H8A—C8—H8B107.9
O2—C2—C1109.47 (17)C10—C9—C8127.86 (19)
O2—C3—C4108.0 (2)C10—C9—S1109.13 (15)
O2—C3—H3C110.1C8—C9—S1123.00 (14)
C4—C3—H3C110.1C9—C10—N6117.05 (19)
O2—C3—H3B110.1C9—C10—H10121.5
C4—C3—H3B110.1N6—C10—H10121.5
H3C—C3—H3B108.4N6—C11—S1117.24 (17)
C3—C4—H4A109.5N6—C11—Cl1123.01 (18)
C3—C4—H4B109.5S1—C11—Cl1119.74 (15)
H4A—C4—H4B109.5C6—N1—C5107.68 (16)
C3—C4—H4C109.5C6—N1—C1113.41 (16)
H4A—C4—H4C109.5C5—N1—C1111.93 (16)
H4B—C4—H4C109.5C7—N2—C8121.33 (16)
N1—C5—N3111.07 (15)C7—N2—C6120.93 (15)
N1—C5—H5A109.4C8—N2—C6116.72 (15)
N3—C5—H5A109.4C7—N3—C5122.00 (17)
N1—C5—H5B109.4C7—N3—H3A115.8 (16)
N3—C5—H5B109.4C5—N3—H3A122.2 (16)
H5A—C5—H5B108.0N5—N4—C7118.95 (16)
N1—C6—N2112.02 (15)O4—N5—O3120.48 (17)
N1—C6—H6A109.2O4—N5—N4115.65 (17)
N2—C6—H6A109.2O3—N5—N4123.84 (16)
N1—C6—H6B109.2C11—N6—C10108.32 (18)
N2—C6—H6B109.2C2—O2—C3116.56 (17)
H6A—C6—H6B107.9C11—S1—C988.24 (10)
N3—C7—N2118.48 (17)
N1—C1—C2—O17.9 (3)N1—C6—N2—C8−143.03 (17)
N1—C1—C2—O2−171.21 (18)N2—C7—N3—C5−3.8 (3)
N2—C8—C9—C10−105.2 (2)N4—C7—N3—C5174.62 (18)
N2—C8—C9—S173.8 (2)N1—C5—N3—C7−28.0 (3)
C8—C9—C10—N6179.47 (18)N3—C7—N4—N54.3 (3)
S1—C9—C10—N60.3 (2)N2—C7—N4—N5−177.22 (16)
N2—C6—N1—C5−55.1 (2)C7—N4—N5—O4−179.85 (17)
N2—C6—N1—C169.28 (19)C7—N4—N5—O32.1 (3)
N3—C5—N1—C656.0 (2)S1—C11—N6—C100.8 (2)
N3—C5—N1—C1−69.3 (2)Cl1—C11—N6—C10179.62 (16)
C2—C1—N1—C665.1 (2)C9—C10—N6—C11−0.7 (3)
C2—C1—N1—C5−172.82 (16)O1—C2—O2—C3−0.5 (4)
N3—C7—N2—C8173.29 (16)C1—C2—O2—C3178.7 (2)
N4—C7—N2—C8−5.4 (2)C4—C3—O2—C2179.5 (2)
N3—C7—N2—C65.2 (3)N6—C11—S1—C9−0.57 (19)
N4—C7—N2—C6−173.49 (16)Cl1—C11—S1—C9−179.41 (14)
C9—C8—N2—C7−82.8 (2)C10—C9—S1—C110.11 (16)
C9—C8—N2—C685.8 (2)C8—C9—S1—C11−179.09 (17)
N1—C6—N2—C725.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N6i0.79 (2)2.55 (2)3.133 (2)132 (2)
N3—H3A···O30.79 (2)1.98 (2)2.570 (2)131 (2)
C3—H3C···O3ii0.972.573.191 (3)122
C5—H5A···N1iii0.972.613.449 (3)144
C6—H6B···O4iv0.972.563.478 (3)159
C10—H10···O1v0.932.453.278 (3)149

Symmetry codes: (i) x, y+1, z; (ii) x−1, y−1, z; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+2, −z+1; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2201).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kagabu, S. (1996). J. Pestic. Sci.21, 237–239.
  • Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci.30, 409–413.
  • Maienfisch, P., Angst, M. & Brandl, F. (2001). Pest. Management Sci.57, 906–913. [PubMed]
  • Riley, K. E. & Merz, K. M. Jr (2007). J. Phys. Chem. A, 111, 1688–1694. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem.55, 143–147. [PubMed]
  • Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem.48, 6016–6024. [PubMed]
  • Tomizawa, M. & Yamamoto, I. (1993). J. Pestic. Sci.18, 91–98.
  • Zhang, N. J., Tomizawa, M. & Casida, J. E. (2004). J. Org. Chem.69, 876–881. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography