PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m699.
Published online 2010 May 22. doi:  10.1107/S1600536810018118
PMCID: PMC2979400

Poly[μ2-aqua-(μ3-2,5-dichloro­benzene­sulfonato)sodium]

Abstract

In the title compound, [Na(C6H3Cl2O3S)(H2O)]n, the NaI ion is penta­coordinated by three dichloro­benzene­sulfonate anions and two water mol­ecules, forming a distorted trigonal-bipyramidal geometry. The NaI ions are bridged by the sulfonate groups and the water mol­ecules, leading to a polymeric layer structure parallel to the bc plane in which O—H(...)O hydrogen bonds are observed.

Related literature

For general background to organic sulfonyl chloride compounds, see: Adams & Marvel (1941 [triangle]); D’Souza et al. (2008 [triangle]); Henze & Artman (1957 [triangle]); Uchiro & Kobayashi (1999 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m699-scheme1.jpg

Experimental

Crystal data

  • [Na(C6H3Cl2O3S)(H2O)]
  • M r = 267.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m699-efi1.jpg
  • a = 17.2461 (10) Å
  • b = 5.4568 (3) Å
  • c = 10.7178 (6) Å
  • β = 106.190 (2)°
  • V = 968.64 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 100 K
  • 0.34 × 0.34 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.749, T max = 0.955
  • 15240 measured reflections
  • 4266 independent reflections
  • 3594 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.100
  • S = 1.12
  • 4266 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018118/is2546sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018118/is2546Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Organic sulfonyl chloride compounds can be used as fundamental starting material for the synthesis of a variety of useful agricultural and medical compounds. They are widespread in many natural products and widely used as various artificial chemicals. It can be used as precursors in the synthesis of sulfonamide-based drugs (Adams & Marvel, 1941; D'Souza et al., 2008; Henze & Artman, 1957; Uchiro & Kobayashi, 1999).

The asymmetric unit of the title compound contains one dichlorobenzenesulfonate anion, one sodium cation and one water molecule (Fig. 1). Each sodium cation is pentacoordinated with three dichlorobenzenesulfonate anions and two water molecules to form a distorted trigonal bipyramidal geometry (Fig. 2). In the crystal structure (Fig. 3), the molecules are linked into polymeric planes parallel to the bc plane. The polymeric structures are stabilized by the O1W—H1W1···O3 and O1W—H2W1···O2 hydrogen bonds (Table 1).

Experimental

2,5-Dichlorobenzenesulfonyl chloride (0.02 mol, 4.86 g) was dissolved in 25 ml of 1,4-dioxane (C4H8O2) in round bottom flask with stirring. Sodium hydroxide (0.01 mol, 0.4 g) was added to the mixture and refluxed for 2 hours. The colour of the mixture was changed from colorless to light brown. After solvent evaporation, 50 ml of distilled water was added and mixed with 50 ml of butanol. After shaking the mixture for 15 min, butanol layer was isolated and brown precipitate was left after the butanol evaporation. The precipitate was dissolved in methanol at room temperature and left over night. The colourless plate crystals were formed, filtrated, washed with water and dried at 333 K.

Refinement

Atoms H1W1 and H2W1 were located in a difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms, showing the coordination environment for the NaI ion.
Fig. 3.
The crystal packing of title compound, viewed down the b axis, showing a polymeric plane parallel to the bc plane.

Crystal data

[Na(C6H3Cl2O3S)(H2O)]F(000) = 536
Mr = 267.05Dx = 1.831 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5321 reflections
a = 17.2461 (10) Åθ = 3.7–34.9°
b = 5.4568 (3) ŵ = 0.91 mm1
c = 10.7178 (6) ÅT = 100 K
β = 106.190 (2)°Plate, colourless
V = 968.64 (9) Å30.34 × 0.34 × 0.05 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer4266 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 35.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −27→26
Tmin = 0.749, Tmax = 0.955k = −8→7
15240 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1259P] where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Na10.08149 (3)0.90539 (10)0.72118 (5)0.01189 (11)
S10.148184 (17)0.41852 (5)0.54858 (3)0.00956 (7)
Cl10.42170 (2)0.19246 (8)0.92304 (3)0.02371 (9)
Cl20.25118 (2)0.84404 (7)0.45028 (3)0.02048 (8)
O10.12791 (6)0.21059 (18)0.61606 (9)0.01572 (18)
O20.13814 (6)0.37277 (18)0.41079 (8)0.01294 (16)
O30.10928 (6)0.64583 (17)0.57044 (8)0.01330 (17)
C10.29337 (8)0.3214 (2)0.72508 (11)0.0135 (2)
H1A0.26670.19160.75140.016*
C20.37368 (8)0.3708 (3)0.78932 (12)0.0157 (2)
C30.41525 (8)0.5610 (3)0.75190 (13)0.0191 (3)
H3A0.46880.59210.79670.023*
C40.37588 (8)0.7047 (3)0.64672 (14)0.0191 (2)
H4A0.40320.83230.61990.023*
C50.29559 (8)0.6583 (2)0.58129 (12)0.0139 (2)
C60.25339 (7)0.4687 (2)0.62083 (11)0.01083 (19)
O1W0.04880 (6)0.57236 (17)0.84097 (9)0.01383 (17)
H1W10.06100.64200.90410.021*
H2W10.07710.46000.84670.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0144 (2)0.0106 (2)0.0110 (2)−0.00028 (18)0.00418 (17)−0.00018 (16)
S10.01175 (13)0.00815 (12)0.00837 (11)−0.00060 (9)0.00211 (9)0.00033 (8)
Cl10.01946 (16)0.02930 (19)0.01790 (14)0.00684 (13)−0.00218 (11)0.00674 (12)
Cl20.01613 (15)0.02089 (16)0.02309 (15)−0.00208 (11)0.00327 (11)0.01191 (12)
O10.0187 (4)0.0124 (4)0.0152 (4)−0.0036 (3)0.0034 (3)0.0044 (3)
O20.0173 (4)0.0120 (4)0.0083 (3)0.0001 (3)0.0017 (3)−0.0012 (3)
O30.0148 (4)0.0117 (4)0.0137 (4)0.0018 (3)0.0045 (3)−0.0010 (3)
C10.0146 (5)0.0136 (5)0.0118 (4)0.0021 (4)0.0025 (4)0.0005 (4)
C20.0143 (5)0.0184 (6)0.0127 (5)0.0052 (4)0.0009 (4)0.0007 (4)
C30.0112 (5)0.0232 (7)0.0209 (6)0.0010 (5)0.0010 (4)−0.0002 (5)
C40.0128 (5)0.0203 (6)0.0233 (6)−0.0025 (5)0.0038 (5)0.0029 (5)
C50.0131 (5)0.0136 (5)0.0148 (5)0.0000 (4)0.0037 (4)0.0025 (4)
C60.0113 (5)0.0104 (5)0.0105 (4)0.0004 (4)0.0027 (4)−0.0003 (3)
O1W0.0159 (4)0.0109 (4)0.0133 (4)0.0000 (3)0.0019 (3)−0.0002 (3)

Geometric parameters (Å, °)

Na1—O1i2.2775 (10)C1—C21.3905 (18)
Na1—O32.2974 (10)C1—C61.3930 (17)
Na1—O2ii2.3329 (10)C1—H1A0.9300
Na1—O1Wiii2.3427 (11)C2—C31.383 (2)
Na1—O1W2.3816 (11)C3—C41.386 (2)
S1—O11.4400 (10)C3—H3A0.9300
S1—O21.4597 (9)C4—C51.3900 (19)
S1—O31.4599 (10)C4—H4A0.9300
S1—C61.7841 (12)C5—C61.3971 (17)
Cl1—C21.7393 (13)O1W—H1W10.7531
Cl2—C51.7279 (13)O1W—H2W10.7754
O1i—Na1—O386.09 (4)C2—C1—C6119.15 (12)
O1i—Na1—O2ii86.09 (4)C2—C1—H1A120.4
O3—Na1—O2ii144.45 (4)C6—C1—H1A120.4
O1i—Na1—O1Wiii90.95 (4)C3—C2—C1121.83 (12)
O3—Na1—O1Wiii114.30 (4)C3—C2—Cl1119.52 (10)
O2ii—Na1—O1Wiii100.45 (4)C1—C2—Cl1118.63 (11)
O1i—Na1—O1W173.38 (4)C2—C3—C4118.99 (12)
O3—Na1—O1W92.05 (4)C2—C3—H3A120.5
O2ii—Na1—O1W91.77 (4)C4—C3—H3A120.5
O1Wiii—Na1—O1W95.60 (3)C3—C4—C5120.04 (13)
O1i—Na1—H1W1160.3C3—C4—H4A120.0
O3—Na1—H1W1107.2C5—C4—H4A120.0
O2ii—Na1—H1W174.6C4—C5—C6120.79 (12)
O1Wiii—Na1—H1W196.4C4—C5—Cl2117.17 (10)
O1W—Na1—H1W117.3C6—C5—Cl2122.04 (10)
O1—S1—O2113.36 (6)C1—C6—C5119.18 (11)
O1—S1—O3113.71 (6)C1—C6—S1118.40 (9)
O2—S1—O3112.18 (5)C5—C6—S1122.32 (9)
O1—S1—C6105.24 (6)Na1vi—O1W—Na1119.73 (4)
O2—S1—C6106.54 (5)Na1vi—O1W—H1W1117.2
O3—S1—C6104.91 (6)Na1—O1W—H1W192.9
S1—O1—Na1iv173.06 (7)Na1vi—O1W—H2W1104.3
S1—O2—Na1v134.05 (6)Na1—O1W—H2W1114.1
S1—O3—Na1146.31 (6)H1W1—O1W—H2W1108.4
O1—S1—O2—Na1v135.33 (8)C3—C4—C5—Cl2−179.44 (11)
O3—S1—O2—Na1v4.87 (10)C2—C1—C6—C51.66 (18)
C6—S1—O2—Na1v−109.39 (8)C2—C1—C6—S1−174.79 (9)
O1—S1—O3—Na149.56 (13)C4—C5—C6—C1−1.65 (19)
O2—S1—O3—Na1179.85 (10)Cl2—C5—C6—C1178.27 (10)
C6—S1—O3—Na1−64.89 (12)C4—C5—C6—S1174.65 (10)
O1i—Na1—O3—S1130.29 (11)Cl2—C5—C6—S1−5.43 (16)
O2ii—Na1—O3—S152.59 (14)O1—S1—C6—C1−3.24 (11)
O1Wiii—Na1—O3—S1−140.43 (10)O2—S1—C6—C1−123.88 (10)
O1W—Na1—O3—S1−43.34 (11)O3—S1—C6—C1117.01 (10)
C6—C1—C2—C3−0.5 (2)O1—S1—C6—C5−179.57 (10)
C6—C1—C2—Cl1177.65 (9)O2—S1—C6—C559.79 (12)
C1—C2—C3—C4−0.6 (2)O3—S1—C6—C5−59.32 (11)
Cl1—C2—C3—C4−178.80 (11)O3—Na1—O1W—Na1vi−84.32 (5)
C2—C3—C4—C50.6 (2)O2ii—Na1—O1W—Na1vi131.02 (5)
C3—C4—C5—C60.5 (2)O1Wiii—Na1—O1W—Na1vi30.34 (5)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z+1/2; (iii) −x, y+1/2, −z+3/2; (iv) x, y−1, z; (v) x, −y+3/2, z−1/2; (vi) −x, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3ii0.752.092.8409 (13)172
O1W—H2W1···O2vii0.782.122.8620 (14)162

Symmetry codes: (ii) x, −y+3/2, z+1/2; (vii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2546).

References

  • Adams, R. & Marvel, C. S. (1941). Org. Synth. Coll.1, 504–512.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • D’Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci.9, 914–925. [PMC free article] [PubMed]
  • Henze, H. R. & Artman, N. E. (1957). J. Org. Chem.22, 1410–1413.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Uchiro, H. & Kobayashi, S. (1999). Tetrahedron Lett.40, 3179–3182.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography