PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1259.
Published online 2010 May 8. doi:  10.1107/S1600536810015710
PMCID: PMC2979396

5-Methyl-2,4-bis­(methyl­sulfan­yl)tricyclo­[6.2.1.02,7]undeca-4,9-diene-3,6-dione1

Abstract

The structure analysis of the title compound, C14H16O2S2, shows the SMe and H atoms of the bond linking the six-membered rings to be syn and also to be syn to the bridgehead –CH2– group. Each of the five-membered rings adopts an envelope conformation at the bridgehead –CH2– group. The dione-substituted ring adopts a folded conformation about the 1,4-C(...)C vector, with the ketone groups lying to one side. The cyclo­hexene ring adopts a boat conformation.

Related literature

For background to reactions of toluquinone-cyclo­penta­diene Diels–Alder adducts epoxides with nucleophiles under heterogeneous conditions, see: von Richthofen et al. (2010 [triangle]). For conformational analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1259-scheme1.jpg

Experimental

Crystal data

  • C14H16O2S2
  • M r = 280.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1259-efi1.jpg
  • a = 9.1109 (11) Å
  • b = 17.3009 (19) Å
  • c = 9.3746 (11) Å
  • β = 115.916 (2)°
  • V = 1329.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 98 K
  • 0.28 × 0.18 × 0.15 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.887, T max = 1
  • 10394 measured reflections
  • 3044 independent reflections
  • 2974 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.092
  • S = 1.02
  • 3044 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015710/hg2678sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015710/hg2678Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP, CAPES, and CNPq (306532/2009–3 to JZ-S) for financial support.

supplementary crystallographic information

Comment

The structure of the title compound, (I), was investigated as a part of a study into the reactions of toluquinone-cyclopentadiene Diels-Alder adducts epoxides with nucleophiles under heterogeneous conditions (von Richthofen et al., 2010). The most important feature of the molecular structure, Fig. 1, is the syn relationship between the bridgehead-C7, S1 and H6 atoms; the oxo groups and double bond of the hexene residue lie to the opposite side of the molecule to these atoms. The conformation of each of the five-membered rings in (I) is an envelope on C7; the ring puckering parameters (Cremer & Pople, 1975) are Q2 = 0.6188 (18) Å and [var phi]2 = 252.91 (16) ° for C1,C2,C5–C7, and Q2 = 0.5393 (18) Å and [var phi]2 = 323.49 (19) ° for C2–C5,C6. The cyclohexene ring, C1–C6, adopts a boat form with ring-puckering parameters of q2 = 0.9782 (17) Å, q3 = 0.0101 (17) Å, θ = 89.41 (10) °, and [var phi]2 = 59.60 (10) °. Finally, the C1,C6,C8–C11 dione-substituted ring adopts a folded conformation about the C8–C11 vector. The C1,C6,C9,C10 atoms define a plane [r.m.s. deviation = 0.0069 Å] with the C8 and C11 atoms lying 0.3859 (20) and 0.3099 (21) Å out of this plane, respectively; the O1 and O2 atoms lie even further out of the plane, i.e. 0.950 (3) and -0.743 (3) Å, respectively. No specific intermolecular interactions are noted in the crystal packing.

Experimental

The preparation and characterisation is as described in the literature (von Richthofen et al., 2010). The crystals were obtained by slow evaporation at 253 K from a 6:1 solution of n-hexane:ethyl acetate.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Crystal data

C14H16O2S2F(000) = 592
Mr = 280.39Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5730 reflections
a = 9.1109 (11) Åθ = 2.4–40.4°
b = 17.3009 (19) ŵ = 0.39 mm1
c = 9.3746 (11) ÅT = 98 K
β = 115.916 (2)°Block, pale-yellow
V = 1329.1 (3) Å30.28 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer3044 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.887, Tmax = 1k = −22→16
10394 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0478P)2 + 1.0842P] where P = (Fo2 + 2Fc2)/3
3044 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.09559 (4)0.19478 (2)0.09496 (4)0.01770 (11)
S20.59801 (5)0.11808 (2)0.12851 (4)0.01903 (11)
O10.29429 (13)0.03034 (6)0.10133 (13)0.0187 (2)
O20.54427 (14)0.17201 (7)0.62713 (13)0.0217 (2)
C10.20518 (17)0.11982 (8)0.24056 (16)0.0131 (3)
C20.09479 (18)0.05593 (8)0.26238 (18)0.0166 (3)
H20.00930.03410.16510.020*
C30.21532 (18)−0.00100 (9)0.37784 (19)0.0186 (3)
H30.2376−0.05040.35340.022*
C40.28332 (19)0.03223 (9)0.52005 (19)0.0192 (3)
H40.36090.01020.61290.023*
C50.21127 (18)0.11264 (9)0.50320 (18)0.0176 (3)
H50.21980.13680.60110.021*
C60.28355 (17)0.15956 (8)0.40699 (17)0.0143 (3)
H60.24050.21230.39450.017*
C70.03709 (19)0.09835 (9)0.37360 (19)0.0201 (3)
H7A−0.02130.14580.32810.024*
H7B−0.02690.06570.40920.024*
C80.32628 (17)0.08718 (8)0.18602 (16)0.0136 (3)
C90.48477 (17)0.12970 (8)0.23722 (17)0.0136 (3)
C100.55309 (17)0.16556 (8)0.38032 (17)0.0142 (3)
C110.46773 (17)0.16467 (8)0.48354 (17)0.0146 (3)
C120.71871 (18)0.20233 (9)0.44683 (18)0.0183 (3)
H12A0.80090.16310.49070.027*
H12B0.72860.23830.52850.027*
H12C0.73270.22910.36390.027*
C130.4452 (2)0.11235 (10)−0.07521 (18)0.0232 (3)
H13A0.49780.1060−0.14360.035*
H13B0.38190.1590−0.10280.035*
H13C0.37490.0690−0.08730.035*
C14−0.0177 (2)0.13994 (10)−0.08395 (19)0.0257 (3)
H14A−0.08030.1746−0.16890.039*
H14B−0.08980.1047−0.06680.039*
H14C0.05680.1114−0.11120.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01849 (19)0.01411 (19)0.01702 (18)0.00254 (13)0.00454 (15)0.00180 (13)
S20.0191 (2)0.0247 (2)0.01740 (19)−0.00085 (14)0.01171 (15)−0.00128 (14)
O10.0216 (5)0.0166 (5)0.0186 (5)−0.0013 (4)0.0093 (4)−0.0041 (4)
O20.0207 (6)0.0295 (6)0.0137 (5)−0.0047 (4)0.0064 (4)−0.0031 (4)
C10.0132 (6)0.0120 (6)0.0127 (6)0.0011 (5)0.0045 (5)0.0013 (5)
C20.0148 (7)0.0163 (7)0.0189 (7)−0.0022 (5)0.0075 (6)0.0001 (5)
C30.0212 (7)0.0136 (7)0.0245 (7)0.0008 (5)0.0133 (6)0.0039 (6)
C40.0212 (7)0.0180 (7)0.0210 (7)0.0010 (6)0.0116 (6)0.0046 (6)
C50.0186 (7)0.0195 (7)0.0178 (7)−0.0001 (5)0.0109 (6)0.0007 (6)
C60.0160 (7)0.0146 (6)0.0140 (6)−0.0005 (5)0.0079 (5)−0.0011 (5)
C70.0175 (7)0.0208 (7)0.0254 (8)0.0011 (6)0.0126 (6)0.0026 (6)
C80.0154 (7)0.0130 (6)0.0119 (6)0.0011 (5)0.0054 (5)0.0026 (5)
C90.0149 (6)0.0133 (6)0.0141 (6)0.0010 (5)0.0076 (5)0.0014 (5)
C100.0143 (6)0.0127 (6)0.0155 (6)0.0006 (5)0.0065 (5)0.0011 (5)
C110.0172 (7)0.0122 (6)0.0145 (6)−0.0014 (5)0.0070 (6)−0.0014 (5)
C120.0156 (7)0.0204 (7)0.0191 (7)−0.0034 (5)0.0078 (6)−0.0018 (6)
C130.0317 (9)0.0263 (8)0.0146 (7)0.0017 (7)0.0130 (7)0.0011 (6)
C140.0246 (8)0.0248 (8)0.0178 (7)0.0020 (6)0.0001 (6)−0.0012 (6)

Geometric parameters (Å, °)

S1—C141.8071 (17)C5—H50.9800
S1—C11.8304 (14)C6—C111.512 (2)
S2—C91.7500 (14)C6—H60.9800
S2—C131.8086 (17)C7—H7A0.9700
O1—C81.2167 (18)C7—H7B0.9700
O2—C111.2223 (18)C8—C91.5003 (19)
C1—C81.5135 (19)C9—C101.357 (2)
C1—C61.5630 (19)C10—C111.4830 (19)
C1—C21.5668 (19)C10—C121.4994 (19)
C2—C31.520 (2)C12—H12A0.9600
C2—C71.543 (2)C12—H12B0.9600
C2—H20.9800C12—H12C0.9600
C3—C41.330 (2)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.517 (2)C13—H13C0.9600
C4—H40.9300C14—H14A0.9600
C5—C71.540 (2)C14—H14B0.9600
C5—C61.557 (2)C14—H14C0.9600
C14—S1—C1102.96 (7)C2—C7—H7A112.9
C9—S2—C13104.11 (7)C5—C7—H7B112.9
C8—C1—C6114.76 (11)C2—C7—H7B112.9
C8—C1—C2112.65 (11)H7A—C7—H7B110.3
C6—C1—C2102.67 (11)O1—C8—C9121.85 (13)
C8—C1—S1104.66 (9)O1—C8—C1121.33 (13)
C6—C1—S1107.16 (9)C9—C8—C1116.80 (12)
C2—C1—S1115.16 (10)C10—C9—C8120.12 (13)
C3—C2—C7100.40 (12)C10—C9—S2119.71 (11)
C3—C2—C1104.19 (11)C8—C9—S2119.17 (10)
C7—C2—C1100.39 (11)C9—C10—C11119.70 (13)
C3—C2—H2116.5C9—C10—C12123.26 (13)
C7—C2—H2116.5C11—C10—C12116.91 (12)
C1—C2—H2116.5O2—C11—C10120.53 (13)
C4—C3—C2107.98 (13)O2—C11—C6120.63 (13)
C4—C3—H3126.0C10—C11—C6118.73 (12)
C2—C3—H3126.0C10—C12—H12A109.5
C3—C4—C5107.54 (14)C10—C12—H12B109.5
C3—C4—H4126.2H12A—C12—H12B109.5
C5—C4—H4126.2C10—C12—H12C109.5
C4—C5—C7100.65 (12)H12A—C12—H12C109.5
C4—C5—C6105.37 (12)H12B—C12—H12C109.5
C7—C5—C6100.23 (12)S2—C13—H13A109.5
C4—C5—H5116.1S2—C13—H13B109.5
C7—C5—H5116.1H13A—C13—H13B109.5
C6—C5—H5116.1S2—C13—H13C109.5
C11—C6—C5114.71 (12)H13A—C13—H13C109.5
C11—C6—C1115.31 (11)H13B—C13—H13C109.5
C5—C6—C1102.97 (11)S1—C14—H14A109.5
C11—C6—H6107.8S1—C14—H14B109.5
C5—C6—H6107.8H14A—C14—H14B109.5
C1—C6—H6107.8S1—C14—H14C109.5
C5—C7—C294.11 (11)H14A—C14—H14C109.5
C5—C7—H7A112.9H14B—C14—H14C109.5
C14—S1—C1—C867.48 (11)C3—C2—C7—C548.84 (12)
C14—S1—C1—C6−170.26 (10)C1—C2—C7—C5−57.84 (12)
C14—S1—C1—C2−56.77 (12)C6—C1—C8—O1148.85 (13)
C8—C1—C2—C355.85 (15)C2—C1—C8—O131.83 (18)
C6—C1—C2—C3−68.13 (13)S1—C1—C8—O1−93.99 (14)
S1—C1—C2—C3175.78 (10)C6—C1—C8—C9−33.00 (17)
C8—C1—C2—C7159.48 (12)C2—C1—C8—C9−150.01 (12)
C6—C1—C2—C735.50 (13)S1—C1—C8—C984.16 (12)
S1—C1—C2—C7−80.59 (12)O1—C8—C9—C10−148.32 (14)
C7—C2—C3—C4−32.22 (15)C1—C8—C9—C1033.53 (19)
C1—C2—C3—C471.40 (15)O1—C8—C9—S220.23 (19)
C2—C3—C4—C5−0.54 (16)C1—C8—C9—S2−157.91 (10)
C3—C4—C5—C733.23 (15)C13—S2—C9—C10−153.96 (12)
C3—C4—C5—C6−70.61 (15)C13—S2—C9—C837.43 (13)
C4—C5—C6—C11−59.34 (15)C8—C9—C10—C11−2.0 (2)
C7—C5—C6—C11−163.48 (12)S2—C9—C10—C11−170.46 (10)
C4—C5—C6—C166.75 (14)C8—C9—C10—C12173.67 (13)
C7—C5—C6—C1−37.39 (13)S2—C9—C10—C125.2 (2)
C8—C1—C6—C114.20 (17)C9—C10—C11—O2155.13 (14)
C2—C1—C6—C11126.78 (12)C12—C10—C11—O2−20.8 (2)
S1—C1—C6—C11−111.53 (11)C9—C10—C11—C6−28.7 (2)
C8—C1—C6—C5−121.50 (12)C12—C10—C11—C6155.42 (13)
C2—C1—C6—C51.07 (13)C5—C6—C11—O2−38.17 (19)
S1—C1—C6—C5122.77 (10)C1—C6—C11—O2−157.58 (14)
C4—C5—C7—C2−49.33 (13)C5—C6—C11—C10145.63 (13)
C6—C5—C7—C258.61 (12)C1—C6—C11—C1026.22 (18)

Footnotes

1Additional correspondence author, e-mail: cldvitta@iq.usp.br.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2678).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Richthofen, A. A. von, Cardoso Filho, A. J. E. P., Marzorati, L., Zukerman-Schpector, J., Tiekink, E. R. T. & Di Vitta, C. (2010). Can. J. Chem In the press.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography