PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1262–o1263.
Published online 2010 May 8. doi:  10.1107/S1600536810015230
PMCID: PMC2979394

(E)-4-Bromo-2-[(2-hydroxy­phen­yl)iminiometh­yl]phenolate

Abstract

The title compound, C13H10BrNO2, crystallizes in a zwitterionic form. The zwitterion exists in a trans configuration about the C=N bond and is almost planar, the dihedral angle between the two benzene rings being 2.29 (9)°. An intra­molecular N—H(...)O hydrogen bond formed between the iminium NH+ and the phenolate O atoms generates an S(6) ring motif. In the crystal, the zwitterions are linked through O—H(...)O hydrogen bonds into chains along [101] and these chains are further connected through C—H(...)Br inter­actions into a two-dimensional network perpendicular to (101). C(...)C [3.572 (3)–3.592 (3) Å] and C(...)Br [3.5633 (19)–3.7339 (18) Å] short contacts are observed. The crystal studied was a twin with twin law An external file that holds a picture, illustration, etc.
Object name is e-66-o1262-efi1.jpg00, 0An external file that holds a picture, illustration, etc.
Object name is e-66-o1262-efi1.jpg0, 001 with a domain ratio of 0.09919 (2):0.90081 (2).

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For background to Schiff bases and their applications, see: Dao et al. (2000 [triangle]); Kagkelari et al. (2009 [triangle]); Karthikeyan et al. (2006 [triangle]); Sriram et al. (2006 [triangle]); Wei & Atwood (1998 [triangle]). For related structures, see: Eltayeb et al. (2009 [triangle]; 2010 [triangle]); Tan & Liu (2009 [triangle]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1262-scheme1.jpg

Experimental

Crystal data

  • C13H10BrNO2
  • M r = 291.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1262-efi3.jpg
  • a = 4.6387 (3) Å
  • b = 18.9379 (13) Å
  • c = 6.2270 (4) Å
  • β = 90.144 (3)°
  • V = 547.02 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.74 mm−1
  • T = 100 K
  • 0.43 × 0.14 × 0.14 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.295, T max = 0.628
  • 8575 measured reflections
  • 3120 independent reflections
  • 3034 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.041
  • S = 1.02
  • 3120 reflections
  • 191 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1480 Friedel pairs
  • Flack parameter: 0.027 (7)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015230/rz2436sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015230/rz2436Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002 and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship. The Inter­national University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Much attention has been given to Schiff base ligands due to their applications such as in coordination chemistry (Kagkelari et al., 2009), chelated boron catalyst (Wei & Atwood, 1998), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. We have reported the crystal structures of Schiff base ligands which existed in a zwitterionic form i.e 2-((E)-{2-[(E)-2,3-dihydroxybenzylideneamino]-5-methylphenyl}- iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) and (E)-4-allyl-2-{[(2-hydroxyphenyl)iminio]methyl}-6-methoxyphenolate (Eltayeb et al., 2010). Herein we report the crystal structure of the title zwitterionic Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the C═N bond [1.310 (2) Å]; the torsion angle C8–N1–C7–C6 is 179.25 (17)°. The molecule is almost planar with the dihedral angle between the two benzene rings of 2.31 (9)°. The hydroxy group is co-planar with the attached C8–C13 benzene ring with the r.m.s. of 0.0102 (2) Å for the seven non H atoms. Intramolecular N—H···O hydrogen bond between the NH+ and the phenolate O- generates an S(6) ring motif (Fig. 1; Table 1) which help to stabilize the planarity of the molecule (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with those found in related structures (Eltayeb et al., 2009, 2010; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterions are linked through O2–H1O2···O1 hydrogen bonds into chains along the [101] and these chains are further connected through C11—H11A···Br1 interactions into a 2-D network perpendicular to the (101)-plane. The crystal is stabilized by O—H···O and weak C—H···Br interactions (Table 1). C···C [3.572 (3)-3.592 (3) Å] and C···Br [3.5633 (19)-3.7339 (18) Å] short contacts are observed.

Experimental

The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde (0.402 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after nine days.

Refinement

Hydroxyl H atom was placed in calculated positions with d(O—H) = 0.82 Å and the Uiso values was constrained to be 1.5Ueq of the carrier atom. The remaining H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.80 Å from Br1 and the deepest hole is located at 0.99 Å from Br1. The crystal studied was a twin with twin law 1 0 0, 0 1 0, 0 0 1, leading to a distribution (refined BASF parameter) of 0.09919/0.90081 (2).

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed lines.
Fig. 2.
The crystal packing showing 2-D networks perpendicular to the (101)-plane.

Crystal data

C13H10BrNO2F(000) = 292
Mr = 291.12Dx = 1.773 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3120 reflections
a = 4.6387 (3) Åθ = 1.1–30.0°
b = 18.9379 (13) ŵ = 3.74 mm1
c = 6.2270 (4) ÅT = 100 K
β = 90.144 (3)°Needle, yellow
V = 547.02 (6) Å30.43 × 0.14 × 0.14 mm
Z = 2

Data collection

Bruker APEXII DUO CCD area-detector diffractometer3120 independent reflections
Radiation source: sealed tube3034 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.295, Tmax = 0.628k = −26→26
8575 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041w = 1/[σ2(Fo2) + (0.0035P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3120 reflectionsΔρmax = 0.59 e Å3
191 parametersΔρmin = −0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1480 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.027 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.00526 (4)0.442840 (15)0.87673 (2)0.01554 (4)
O10.5191 (3)0.66300 (7)0.29008 (19)0.0152 (2)
O21.1314 (3)0.70088 (8)1.0194 (2)0.0166 (3)
H1O21.26970.69251.09760.025*
N10.8565 (3)0.69973 (8)0.6076 (2)0.0121 (3)
H1N10.802 (6)0.6976 (16)0.470 (5)0.026 (7)*
C10.4132 (4)0.61426 (10)0.4149 (3)0.0126 (3)
C20.1934 (4)0.56695 (10)0.3446 (3)0.0140 (3)
H2A0.133 (6)0.5756 (14)0.207 (4)0.020 (6)*
C30.0797 (4)0.51628 (10)0.4781 (3)0.0138 (3)
H3A−0.064 (6)0.4852 (14)0.440 (4)0.021 (6)*
C40.1776 (4)0.51058 (9)0.6919 (3)0.0129 (3)
C50.3894 (4)0.55482 (9)0.7685 (3)0.0125 (3)
H5A0.450 (6)0.5535 (16)0.905 (4)0.026 (7)*
C60.5112 (4)0.60653 (9)0.6331 (3)0.0122 (3)
C70.7261 (4)0.65154 (9)0.7227 (3)0.0123 (3)
H7A0.787 (5)0.6470 (12)0.868 (4)0.009 (5)*
C81.0707 (4)0.74911 (9)0.6695 (3)0.0117 (3)
C91.2064 (4)0.74952 (9)0.8722 (3)0.0125 (3)
C101.4149 (4)0.80132 (10)0.9137 (3)0.0148 (3)
H10A1.494 (6)0.8047 (15)1.048 (5)0.022 (6)*
C111.4940 (4)0.84982 (10)0.7569 (3)0.0159 (3)
H11A1.639 (6)0.8847 (13)0.786 (4)0.018 (6)*
C121.3635 (4)0.84799 (10)0.5548 (3)0.0160 (3)
H12A1.427 (7)0.8788 (17)0.453 (5)0.036 (8)*
C131.1523 (4)0.79797 (9)0.5130 (3)0.0139 (3)
H13A1.045 (5)0.7956 (13)0.368 (3)0.014 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01876 (7)0.01522 (7)0.01262 (6)−0.00425 (9)−0.00307 (5)0.00324 (8)
O10.0161 (6)0.0183 (6)0.0113 (5)−0.0031 (5)−0.0034 (5)0.0033 (5)
O20.0167 (6)0.0224 (7)0.0106 (6)−0.0044 (5)−0.0054 (5)0.0042 (5)
N10.0122 (7)0.0140 (7)0.0102 (7)−0.0004 (5)−0.0033 (5)0.0003 (5)
C10.0122 (7)0.0150 (8)0.0106 (7)0.0001 (6)−0.0012 (5)−0.0002 (6)
C20.0156 (8)0.0172 (8)0.0092 (8)−0.0007 (6)−0.0030 (6)−0.0007 (6)
C30.0136 (8)0.0141 (8)0.0137 (8)−0.0022 (6)−0.0024 (6)−0.0018 (6)
C40.0142 (8)0.0120 (7)0.0126 (8)−0.0007 (6)−0.0003 (6)0.0015 (6)
C50.0150 (8)0.0137 (8)0.0087 (8)0.0011 (6)−0.0030 (6)0.0007 (6)
C60.0116 (7)0.0140 (7)0.0109 (7)0.0014 (6)−0.0014 (6)−0.0021 (6)
C70.0123 (8)0.0139 (8)0.0108 (8)0.0003 (6)−0.0020 (6)−0.0007 (6)
C80.0114 (7)0.0114 (7)0.0122 (7)0.0001 (6)−0.0033 (5)−0.0010 (6)
C90.0127 (7)0.0146 (8)0.0103 (7)0.0003 (6)−0.0012 (6)−0.0007 (6)
C100.0146 (8)0.0174 (9)0.0123 (8)−0.0012 (6)−0.0044 (6)−0.0020 (6)
C110.0141 (8)0.0154 (8)0.0182 (8)−0.0021 (7)−0.0016 (7)−0.0017 (6)
C120.0172 (9)0.0147 (8)0.0161 (8)−0.0007 (7)−0.0011 (6)0.0022 (7)
C130.0128 (8)0.0160 (8)0.0129 (8)0.0008 (6)−0.0026 (6)0.0011 (6)

Geometric parameters (Å, °)

Br1—C41.9011 (18)C5—C61.411 (2)
O1—C11.304 (2)C5—H5A0.89 (2)
O2—C91.346 (2)C6—C71.424 (2)
O2—H1O20.8200C7—H7A0.95 (2)
N1—C71.310 (2)C8—C131.397 (2)
N1—C81.417 (2)C8—C91.409 (2)
N1—H1N10.89 (3)C9—C101.401 (2)
C1—C21.425 (2)C10—C111.391 (3)
C1—C61.439 (2)C10—H10A0.92 (3)
C2—C31.376 (3)C11—C121.396 (3)
C2—H2A0.91 (3)C11—H11A0.96 (3)
C3—C41.409 (2)C12—C131.387 (3)
C3—H3A0.92 (3)C12—H12A0.91 (3)
C4—C51.376 (3)C13—H13A1.03 (2)
C9—O2—H1O2109.5N1—C7—C6121.74 (16)
C7—N1—C8129.42 (16)N1—C7—H7A116.6 (14)
C7—N1—H1N1111.3 (19)C6—C7—H7A121.6 (14)
C8—N1—H1N1119.2 (18)C13—C8—C9120.02 (16)
O1—C1—C2122.15 (15)C13—C8—N1115.98 (15)
O1—C1—C6121.08 (16)C9—C8—N1123.97 (16)
C2—C1—C6116.76 (16)O2—C9—C10122.23 (15)
C3—C2—C1121.85 (16)O2—C9—C8119.39 (15)
C3—C2—H2A125.0 (16)C10—C9—C8118.39 (16)
C1—C2—H2A113.1 (17)C11—C10—C9121.08 (16)
C2—C3—C4120.08 (16)C11—C10—H10A119.3 (18)
C2—C3—H3A124.6 (16)C9—C10—H10A119.6 (17)
C4—C3—H3A115.3 (16)C10—C11—C12120.15 (17)
C5—C4—C3120.59 (16)C10—C11—H11A120.5 (15)
C5—C4—Br1120.14 (13)C12—C11—H11A119.4 (15)
C3—C4—Br1119.24 (13)C13—C12—C11119.38 (17)
C4—C5—C6120.14 (16)C13—C12—H12A122 (2)
C4—C5—H5A122 (2)C11—C12—H12A118 (2)
C6—C5—H5A118 (2)C12—C13—C8120.94 (16)
C5—C6—C7117.51 (15)C12—C13—H13A122.2 (13)
C5—C6—C1120.57 (16)C8—C13—H13A116.8 (13)
C7—C6—C1121.89 (16)
O1—C1—C2—C3−179.04 (17)C1—C6—C7—N1−3.8 (3)
C6—C1—C2—C30.1 (3)C7—N1—C8—C13−175.04 (17)
C1—C2—C3—C40.8 (3)C7—N1—C8—C97.1 (3)
C2—C3—C4—C5−0.8 (3)C13—C8—C9—O2−178.12 (16)
C2—C3—C4—Br1177.31 (14)N1—C8—C9—O2−0.3 (3)
C3—C4—C5—C60.0 (3)C13—C8—C9—C102.3 (3)
Br1—C4—C5—C6−178.09 (13)N1—C8—C9—C10−179.92 (17)
C4—C5—C6—C7178.93 (16)O2—C9—C10—C11178.26 (18)
C4—C5—C6—C10.8 (3)C8—C9—C10—C11−2.1 (3)
O1—C1—C6—C5178.25 (17)C9—C10—C11—C120.6 (3)
C2—C1—C6—C5−0.8 (2)C10—C11—C12—C130.8 (3)
O1—C1—C6—C70.2 (3)C11—C12—C13—C8−0.6 (3)
C2—C1—C6—C7−178.85 (16)C9—C8—C13—C12−0.9 (3)
C8—N1—C7—C6179.25 (17)N1—C8—C13—C12−178.91 (16)
C5—C6—C7—N1178.12 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.821.762.5641 (19)169
N1—H1N1···O10.89 (3)1.84 (3)2.6129 (18)143 (3)
C7—H7A···O20.95 (2)2.12 (2)2.794 (2)127.1 (18)
C11—H11A···Br1ii0.96 (3)2.89 (3)3.6982 (19)143.1 (19)

Symmetry codes: (i) x+1, y, z+1; (ii) −x+2, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2436).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem 35, 805–813. [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934–o935. [PMC free article] [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066. [PMC free article] [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem 14, 7482–7489. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett 16, 2127–2129. [PubMed]
  • Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559. [PMC free article] [PubMed]
  • Wei, P. & Atwood, D. A. (1998). Inorg. Chem 37, 4934–4938. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography