PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1414.
Published online 2010 May 22. doi:  10.1107/S160053681001809X
PMCID: PMC2979392

(E)-3-(4-Fluoro­phen­yl)-1-(2-nitro­phen­yl)prop-2-en-1-one

Abstract

The title compound, C15H10FNO3, was prepared from 2-nitro­acetphenone and 4-fluoro­benzaldehyde by an Aldol condensation reaction. The dihedral angle formed by the two benzene rings is 67.37 (2)°. The crystal structure is stabilized by weak inter­molecular C—H(...)O and C—H(...)F hydrogen bonds.

Related literature

For the biological activities of chalcones, see: Hsieh et al. (1998 [triangle]); Anto et al. (1994 [triangle]); De Vincenzo et al.(2000 [triangle]); Dimmock et al. (1998 [triangle]). For related structures, see: Fun et al. (2008 [triangle]); Guo et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1414-scheme1.jpg

Experimental

Crystal data

  • C15H10FNO3
  • M r = 271.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1414-efi1.jpg
  • a = 7.7698 (16) Å
  • b = 17.072 (3) Å
  • c = 9.759 (2) Å
  • β = 96.72 (3)°
  • V = 1285.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.3 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 12293 measured reflections
  • 2921 independent reflections
  • 2218 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.141
  • S = 1.13
  • 2921 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001809X/lh5041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001809X/lh5041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the National Natural Science Foundation of Shandong Province (2009ZRA07002).

supplementary crystallographic information

Comment

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological activities which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). Of particular interest, the effectiveness of chalcones against cancer has been investigated (De Vincenzo et al.,2000; Dimmock et al.,1998). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the title molecule (Fig. 1) the dihedral angle formed by the two benzene rings is 67.44 (3)°. The nitro group is twisted from the attached benzene ring forming a dihedral angle of 53.73 (5)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in related structures (Fun et al.,2008; Guo et al.,2009). The crystal structure is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds.

Experimental

A mixture of 2-nitroacetphenone (0.02 mol), 4-fluorobenzaldehyde (0.02 mol) and 8% NaOH(5 ml) was stirred in ethanol(30 ml) for 4 h to afford the title compound (yield 65%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H10FNO3F(000) = 560
Mr = 271.24Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2218 reflections
a = 7.7698 (16) Åθ = 3.2–27.5°
b = 17.072 (3) ŵ = 0.11 mm1
c = 9.759 (2) ÅT = 293 K
β = 96.72 (3)°Bar, colourless
V = 1285.6 (5) Å30.3 × 0.3 × 0.2 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2218 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 27.5°, θmin = 3.2°
[var phi] and ω scansh = −9→10
12293 measured reflectionsk = −22→22
2921 independent reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0695P)2 + 0.2079P] where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.08601 (15)0.10025 (8)0.43283 (13)0.0659 (4)
C70.22626 (19)0.11601 (9)0.49650 (15)0.0449 (3)
C90.18075 (19)0.04525 (9)0.70546 (15)0.0469 (3)
H9A0.08710.02260.65170.056*
C60.36095 (18)0.15551 (8)0.42269 (14)0.0418 (3)
C80.27359 (19)0.09685 (9)0.64309 (15)0.0472 (4)
H8A0.36890.12090.69240.057*
C150.1386 (2)−0.05036 (9)0.88492 (16)0.0495 (4)
H15A0.0725−0.07940.81730.059*
F10.27941 (18)−0.06060 (9)1.24775 (11)0.0933 (4)
N10.13799 (19)0.23833 (8)0.29207 (17)0.0589 (4)
C100.21056 (19)0.02052 (9)0.84967 (15)0.0449 (3)
C110.3057 (2)0.06445 (10)0.95326 (16)0.0522 (4)
H11A0.35360.11220.93170.063*
C10.31757 (19)0.20928 (9)0.31805 (16)0.0471 (4)
C50.5339 (2)0.13342 (10)0.44662 (16)0.0521 (4)
H5A0.56850.09770.51650.063*
C140.1637 (2)−0.07817 (11)1.01808 (18)0.0569 (4)
H14A0.1179−0.12611.04080.068*
C120.3287 (2)0.03713 (12)1.08766 (17)0.0595 (5)
H12A0.39110.06611.15740.071*
C130.2572 (2)−0.03371 (12)1.11546 (16)0.0593 (5)
C40.6559 (2)0.16380 (12)0.36778 (19)0.0634 (5)
H4A0.77140.14870.38570.076*
O20.07277 (18)0.26603 (9)0.38907 (18)0.0830 (5)
C20.4367 (2)0.23925 (11)0.2374 (2)0.0643 (5)
H2A0.40260.27450.16670.077*
C30.6067 (3)0.21593 (13)0.2637 (2)0.0702 (5)
H3A0.68880.23560.21060.084*
O10.0655 (2)0.23414 (11)0.17437 (17)0.0930 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0545 (7)0.0779 (9)0.0612 (7)−0.0237 (6)−0.0098 (5)0.0163 (6)
C70.0435 (8)0.0443 (8)0.0459 (8)−0.0029 (6)0.0003 (6)0.0010 (6)
C90.0446 (8)0.0472 (8)0.0477 (8)−0.0016 (6)0.0013 (6)−0.0025 (6)
C60.0411 (7)0.0437 (7)0.0396 (7)−0.0021 (6)0.0009 (5)−0.0065 (6)
C80.0424 (7)0.0526 (9)0.0455 (8)−0.0057 (6)0.0006 (6)−0.0017 (6)
C150.0508 (8)0.0491 (8)0.0488 (8)0.0039 (6)0.0063 (7)0.0005 (6)
F10.1009 (9)0.1298 (11)0.0478 (6)0.0207 (8)0.0028 (6)0.0285 (6)
N10.0533 (8)0.0473 (8)0.0755 (10)0.0011 (6)0.0049 (7)0.0163 (7)
C100.0432 (7)0.0503 (8)0.0417 (7)0.0059 (6)0.0076 (6)−0.0004 (6)
C110.0486 (8)0.0571 (9)0.0515 (8)−0.0001 (7)0.0084 (7)−0.0037 (7)
C10.0458 (8)0.0396 (7)0.0560 (9)−0.0011 (6)0.0070 (6)0.0006 (6)
C50.0474 (8)0.0621 (10)0.0456 (8)0.0040 (7)0.0002 (6)−0.0042 (7)
C140.0590 (9)0.0554 (9)0.0577 (9)0.0109 (7)0.0126 (8)0.0124 (7)
C120.0538 (9)0.0791 (12)0.0448 (8)0.0068 (8)0.0020 (7)−0.0115 (8)
C130.0555 (9)0.0819 (12)0.0411 (8)0.0204 (9)0.0075 (7)0.0121 (8)
C40.0413 (8)0.0821 (13)0.0678 (11)0.0007 (8)0.0105 (8)−0.0142 (9)
O20.0623 (8)0.0779 (10)0.1116 (12)0.0149 (7)0.0225 (8)−0.0109 (8)
C20.0669 (11)0.0554 (10)0.0734 (12)−0.0025 (8)0.0199 (9)0.0147 (8)
C30.0601 (11)0.0744 (12)0.0809 (13)−0.0075 (9)0.0287 (10)0.0056 (10)
O10.0797 (10)0.1129 (13)0.0809 (10)0.0104 (9)−0.0132 (8)0.0361 (9)

Geometric parameters (Å, °)

O3—C71.2195 (18)C10—C111.399 (2)
C7—C81.472 (2)C11—C121.384 (2)
C7—C61.498 (2)C11—H11A0.9300
C9—C81.330 (2)C1—C21.382 (2)
C9—C101.462 (2)C5—C41.390 (2)
C9—H9A0.9300C5—H5A0.9300
C6—C11.385 (2)C14—C131.359 (3)
C6—C51.389 (2)C14—H14A0.9300
C8—H8A0.9300C12—C131.371 (3)
C15—C141.376 (2)C12—H12A0.9300
C15—C101.393 (2)C4—C31.371 (3)
C15—H15A0.9300C4—H4A0.9300
F1—C131.3619 (18)C2—C31.375 (3)
N1—O21.220 (2)C2—H2A0.9300
N1—O11.221 (2)C3—H3A0.9300
N1—C11.475 (2)
O3—C7—C8123.58 (14)C2—C1—C6122.96 (15)
O3—C7—C6119.14 (13)C2—C1—N1117.45 (15)
C8—C7—C6117.27 (12)C6—C1—N1119.56 (13)
C8—C9—C10126.77 (14)C6—C5—C4121.00 (16)
C8—C9—H9A116.6C6—C5—H5A119.5
C10—C9—H9A116.6C4—C5—H5A119.5
C1—C6—C5116.81 (14)C13—C14—C15118.23 (17)
C1—C6—C7121.96 (13)C13—C14—H14A120.9
C5—C6—C7120.89 (14)C15—C14—H14A120.9
C9—C8—C7120.32 (14)C13—C12—C11118.32 (16)
C9—C8—H8A119.8C13—C12—H12A120.8
C7—C8—H8A119.8C11—C12—H12A120.8
C14—C15—C10121.09 (16)C14—C13—F1118.22 (18)
C14—C15—H15A119.5C14—C13—C12123.39 (15)
C10—C15—H15A119.5F1—C13—C12118.40 (17)
O2—N1—O1124.40 (16)C3—C4—C5120.24 (16)
O2—N1—C1117.87 (15)C3—C4—H4A119.9
O1—N1—C1117.71 (16)C5—C4—H4A119.9
C15—C10—C11118.74 (14)C3—C2—C1118.66 (17)
C15—C10—C9117.76 (14)C3—C2—H2A120.7
C11—C10—C9123.49 (15)C1—C2—H2A120.7
C12—C11—C10120.21 (16)C4—C3—C2120.31 (16)
C12—C11—H11A119.9C4—C3—H3A119.8
C10—C11—H11A119.9C2—C3—H3A119.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.573.500 (2)177
C5—H5A···F1ii0.932.543.396 (2)153
C9—H9A···O30.932.512.836 (2)101
C9—H9A···O3iii0.932.573.411 (2)150

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5041).

References

  • Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr.17, 73–80.
  • Bruker (1997). SMART and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.
  • De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol.46, 305–312. [PubMed]
  • Dimmock, J. R. et al. (1998). J. Med. Chem.41, 1014–1026. [PubMed]
  • Fun, H.-K., Chantrapromma, S., Patil, P. S., D’Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. A64, o954–o955. [PMC free article] [PubMed]
  • Guo, H.-M., Liu, L.-Q., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3117. [PMC free article] [PubMed]
  • Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res.15, 39–46. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography