PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m615.
Published online 2010 May 8. doi:  10.1107/S1600536810015801
PMCID: PMC2979388

[(Z)-Ethyl N-isopropyl­thio­carbamato-κS](tricyclo­hexyl­phosphine-κP)gold(I)

Abstract

The AuI atom in the title compound, [Au(C6H12NOS)(C18H33P)], is coordinated within a S,P-donor set that defines a slightly distorted linear geometry [S—Au—P angle = 173.44 (5)°], with the distortion due in part to a close intra­molecular Au(...)O contact [3.023 (4) Å]. The N-bound isopropyl group is disordered over two orientations in a 0.618 (15):0.382 (15) ratio.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m615-scheme1.jpg

Experimental

Crystal data

  • [Au(C6H12NOS)(C18H33P)]
  • M r = 623.61
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m615-efi1.jpg
  • a = 9.1226 (6) Å
  • b = 12.3857 (8) Å
  • c = 12.6754 (9) Å
  • α = 93.475 (1)°
  • β = 105.380 (2)°
  • γ = 102.597 (1)°
  • V = 1336.94 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.65 mm−1
  • T = 223 K
  • 0.23 × 0.15 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.607, T max = 1
  • 9521 measured reflections
  • 6097 independent reflections
  • 5524 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.107
  • S = 1.11
  • 6097 reflections
  • 277 parameters
  • 22 restraints
  • H-atom parameters constrained
  • Δρmax = 1.19 e Å−3
  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015801/hb5427sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015801/hb5427Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

supplementary crystallographic information

Comment

The investigation of the title compound, (I), forms a part of systematic structural studies of molecules with the general formula R3PAu[SC(OR')═ NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

In accord with the literature precedents, the gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. The coordination geometry is distorted from the ideal linear [S—Au—P = 173.44 (5) °] owing to the relatively close approach of the O1 atom, 3.023 (4) Å. The carbonimidothioate ligand is functioning as a thiolate as seen in the values of the C1–S1 and C1═N1 bond distances of 1.752 (5) and 1.254 (7) Å, respectively.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(═S)N(H)(i-Pr) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CHCl3/hexane (3/1) solution held at room temperature.

Refinement

The H atoms were geometrically placed (C—H = 0.97-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.19 and 1.25 e Å-3, respectively, were located 0.84 Å and 1.20 Å from the Au atom. High thermal motion was noted in the iso-propyl substituent and two positions were resolved for each of the C atoms. Anisotopic refinement (constrained to be equivalent for paired components of the disorder, and approximately isotropic by the EADP and ISOR commands in SHELXL-97, respectively) and with the C–C distances restrained to 1.52±0.01 Å showed the major component of the disorder had a site occupancy factor = 0.618 (15).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Only the major component of the disordered iso-propyl group is shown for reasons of clarity.

Crystal data

[Au(C6H12NOS)(C18H33P)]Z = 2
Mr = 623.61F(000) = 628
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.1226 (6) ÅCell parameters from 4588 reflections
b = 12.3857 (8) Åθ = 2.5–29.5°
c = 12.6754 (9) ŵ = 5.65 mm1
α = 93.475 (1)°T = 223 K
β = 105.380 (2)°Block, colourless
γ = 102.597 (1)°0.23 × 0.15 × 0.08 mm
V = 1336.94 (16) Å3

Data collection

Bruker SMART CCD diffractometer6097 independent reflections
Radiation source: fine-focus sealed tube5524 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→10
Tmin = 0.607, Tmax = 1k = −15→16
9521 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3
6097 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 1.19 e Å3
22 restraintsΔρmin = −1.25 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Au0.26509 (2)0.057107 (13)0.194175 (15)0.03141 (8)
S10.41297 (18)0.22569 (11)0.17233 (13)0.0414 (3)
P10.12363 (15)−0.11673 (10)0.19756 (11)0.0291 (3)
O10.2734 (5)0.2778 (3)0.3143 (3)0.0408 (9)
N10.4305 (6)0.4290 (4)0.2737 (4)0.0406 (10)
C10.3760 (6)0.3254 (4)0.2593 (4)0.0320 (10)
C20.532 (2)0.4809 (13)0.213 (2)0.046 (3)0.618 (15)
H20.51850.42960.14680.056*0.618 (15)
C30.496 (2)0.5899 (13)0.1786 (15)0.088 (4)0.618 (15)
H3A0.54670.61270.12240.132*0.618 (15)
H3B0.53570.64700.24200.132*0.618 (15)
H3C0.38390.57960.14920.132*0.618 (15)
C40.6991 (15)0.5034 (16)0.2851 (13)0.074 (4)0.618 (15)
H4A0.71540.55900.34700.111*0.618 (15)
H4B0.76970.53060.24200.111*0.618 (15)
H4C0.71950.43500.31210.111*0.618 (15)
C2A0.560 (4)0.475 (2)0.215 (3)0.046 (3)0.382 (15)
H2A0.60350.41530.18750.056*0.382 (15)
C3A0.479 (4)0.534 (2)0.123 (2)0.088 (4)0.382 (15)
H3D0.50740.51620.05630.132*0.382 (15)
H3E0.51180.61360.14500.132*0.382 (15)
H3F0.36650.50870.10860.132*0.382 (15)
C4A0.682 (3)0.560 (2)0.304 (2)0.074 (4)0.382 (15)
H4D0.64500.62740.30970.111*0.382 (15)
H4E0.77970.57720.28490.111*0.382 (15)
H4F0.69760.53000.37370.111*0.382 (15)
C50.2278 (9)0.3534 (6)0.3835 (6)0.0575 (17)
H5A0.18290.40740.34020.069*
H5B0.31900.39430.44340.069*
C60.1106 (12)0.2858 (7)0.4286 (7)0.075 (2)
H6A0.02090.24580.36860.113*
H6B0.07720.33410.47580.113*
H6C0.15650.23280.47130.113*
C70.2235 (6)−0.1951 (4)0.3003 (5)0.0380 (11)
H70.2834−0.23290.26180.046*
C80.3462 (8)−0.1216 (6)0.3977 (5)0.0538 (16)
H8A0.2947−0.08110.43980.065*
H8B0.4178−0.06650.37070.065*
C90.4408 (8)−0.1896 (6)0.4740 (6)0.0632 (19)
H9A0.5141−0.14040.53860.076*
H9B0.5016−0.22400.43480.076*
C100.3270 (11)−0.2814 (7)0.5114 (7)0.079 (2)
H10A0.3868−0.32720.55680.095*
H10B0.2741−0.24620.55670.095*
C110.2085 (8)−0.3532 (5)0.4159 (6)0.0561 (17)
H11A0.1349−0.40690.44260.067*
H11B0.2609−0.39540.37620.067*
C120.1193 (7)−0.2887 (5)0.3382 (5)0.0392 (11)
H12A0.0529−0.25690.37430.047*
H12B0.0502−0.33980.27340.047*
C13−0.0697 (6)−0.1169 (4)0.2183 (4)0.0324 (10)
H13−0.1246−0.19490.21960.039*
C14−0.0525 (8)−0.0501 (6)0.3267 (5)0.0496 (14)
H14A0.00720.02640.32860.059*
H14B0.0060−0.08300.38760.059*
C15−0.2119 (12)−0.0484 (8)0.3415 (7)0.076 (3)
H15A−0.2670−0.12440.34640.091*
H15B−0.1970−0.00250.41100.091*
C16−0.3115 (10)−0.0032 (7)0.2487 (7)0.068 (2)
H16A−0.26300.07560.24840.082*
H16B−0.4152−0.00830.25940.082*
C17−0.3286 (8)−0.0688 (7)0.1394 (6)0.0601 (18)
H17A−0.3875−0.03520.07920.072*
H17B−0.3885−0.14540.13670.072*
C18−0.1682 (6)−0.0710 (5)0.1221 (5)0.0450 (13)
H18A−0.1838−0.11790.05300.054*
H18B−0.11250.00460.11650.054*
C190.0823 (6)−0.1990 (4)0.0622 (4)0.0337 (10)
H190.0185−0.16110.00780.040*
C200.2347 (7)−0.1946 (5)0.0286 (6)0.0462 (14)
H20A0.2917−0.11670.03400.055*
H20B0.3021−0.23220.07950.055*
C210.1981 (10)−0.2509 (6)−0.0891 (6)0.0586 (17)
H21A0.1396−0.2088−0.14060.070*
H21B0.2963−0.2505−0.10700.070*
C220.1034 (9)−0.3689 (5)−0.1022 (5)0.0561 (17)
H22A0.1661−0.4128−0.05610.067*
H22B0.0769−0.4018−0.17920.067*
C23−0.0453 (8)−0.3736 (5)−0.0695 (5)0.0474 (14)
H23A−0.1022−0.4517−0.07580.057*
H23B−0.1125−0.3360−0.12050.057*
C24−0.0122 (6)−0.3184 (4)0.0485 (5)0.0375 (11)
H24A−0.1114−0.31960.06520.045*
H24B0.0460−0.36020.10050.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.03193 (12)0.02433 (12)0.03862 (12)0.00659 (8)0.01104 (8)0.00564 (7)
S10.0477 (8)0.0273 (6)0.0540 (8)0.0038 (6)0.0272 (7)0.0036 (6)
P10.0273 (6)0.0248 (6)0.0360 (6)0.0074 (5)0.0089 (5)0.0056 (5)
O10.051 (2)0.0296 (18)0.049 (2)0.0086 (17)0.0264 (19)0.0060 (16)
N10.047 (3)0.028 (2)0.042 (2)0.002 (2)0.011 (2)0.0035 (18)
C10.030 (2)0.030 (2)0.036 (2)0.009 (2)0.008 (2)0.0079 (19)
C20.054 (8)0.032 (3)0.052 (3)0.002 (4)0.022 (4)0.004 (3)
C30.111 (8)0.065 (7)0.088 (8)0.012 (6)0.032 (6)0.033 (6)
C40.053 (5)0.090 (9)0.081 (6)0.003 (6)0.034 (5)0.008 (7)
C2A0.054 (8)0.032 (3)0.052 (3)0.002 (4)0.022 (4)0.004 (3)
C3A0.111 (8)0.065 (7)0.088 (8)0.012 (6)0.032 (6)0.033 (6)
C4A0.053 (5)0.090 (9)0.081 (6)0.003 (6)0.034 (5)0.008 (7)
C50.074 (5)0.045 (3)0.058 (4)0.006 (3)0.036 (4)−0.009 (3)
C60.108 (7)0.056 (4)0.073 (5)0.005 (4)0.058 (5)−0.005 (4)
C70.037 (3)0.033 (3)0.044 (3)0.009 (2)0.010 (2)0.010 (2)
C80.054 (4)0.051 (4)0.046 (3)0.007 (3)0.001 (3)0.013 (3)
C90.051 (4)0.064 (4)0.055 (4)0.004 (3)−0.011 (3)0.015 (3)
C100.095 (6)0.073 (5)0.057 (4)0.014 (5)0.001 (4)0.033 (4)
C110.053 (4)0.045 (3)0.072 (4)0.013 (3)0.017 (3)0.029 (3)
C120.040 (3)0.035 (3)0.041 (3)0.005 (2)0.012 (2)0.010 (2)
C130.029 (2)0.029 (2)0.040 (3)0.008 (2)0.011 (2)0.006 (2)
C140.052 (4)0.059 (4)0.042 (3)0.025 (3)0.013 (3)0.002 (3)
C150.106 (7)0.099 (7)0.055 (4)0.061 (6)0.047 (4)0.022 (4)
C160.067 (5)0.082 (5)0.086 (5)0.046 (4)0.046 (4)0.035 (4)
C170.041 (3)0.078 (5)0.073 (5)0.029 (3)0.020 (3)0.031 (4)
C180.033 (3)0.059 (4)0.051 (3)0.020 (3)0.016 (2)0.019 (3)
C190.033 (3)0.032 (2)0.038 (3)0.009 (2)0.012 (2)0.008 (2)
C200.037 (3)0.045 (3)0.063 (4)0.010 (3)0.025 (3)0.004 (3)
C210.071 (5)0.054 (4)0.064 (4)0.019 (4)0.039 (4)0.006 (3)
C220.087 (5)0.046 (3)0.044 (3)0.033 (4)0.020 (3)0.003 (3)
C230.056 (4)0.041 (3)0.043 (3)0.015 (3)0.009 (3)−0.002 (2)
C240.034 (3)0.033 (3)0.045 (3)0.007 (2)0.013 (2)0.001 (2)

Geometric parameters (Å, °)

Au—P12.2653 (13)C9—H9B0.9800
Au—S12.3013 (13)C10—C111.476 (11)
S1—C11.752 (5)C10—H10A0.9800
P1—C71.838 (5)C10—H10B0.9800
P1—C191.845 (5)C11—C121.493 (8)
P1—C131.850 (5)C11—H11A0.9800
O1—C11.365 (6)C11—H11B0.9800
O1—C51.444 (7)C12—H12A0.9800
N1—C11.254 (7)C12—H12B0.9800
N1—C2A1.58 (5)C13—C141.512 (8)
N1—C21.42 (3)C13—C181.531 (7)
C2—C41.511 (9)C13—H130.9900
C2—C31.519 (9)C14—C151.519 (10)
C2—H20.9900C14—H14A0.9800
C3—H3A0.9700C14—H14B0.9800
C3—H3B0.9700C15—C161.503 (11)
C3—H3C0.9700C15—H15A0.9800
C4—H4A0.9700C15—H15B0.9800
C4—H4B0.9700C16—C171.516 (12)
C4—H4C0.9700C16—H16A0.9800
C2A—C4A1.516 (10)C16—H16B0.9800
C2A—C3A1.524 (10)C17—C181.541 (8)
C2A—H2A0.9900C17—H17A0.9800
C3A—H3D0.9700C17—H17B0.9800
C3A—H3E0.9700C18—H18A0.9800
C3A—H3F0.9700C18—H18B0.9800
C4A—H4D0.9700C19—C241.514 (7)
C4A—H4E0.9700C19—C201.549 (7)
C4A—H4F0.9700C19—H190.9900
C5—C61.471 (10)C20—C211.526 (10)
C5—H5A0.9800C20—H20A0.9800
C5—H5B0.9800C20—H20B0.9800
C6—H6A0.9700C21—C221.501 (10)
C6—H6B0.9700C21—H21A0.9800
C6—H6C0.9700C21—H21B0.9800
C7—C81.514 (8)C22—C231.511 (9)
C7—C121.519 (7)C22—H22A0.9800
C7—H70.9900C22—H22B0.9800
C8—C91.538 (9)C23—C241.531 (8)
C8—H8A0.9800C23—H23A0.9800
C8—H8B0.9800C23—H23B0.9800
C9—C101.552 (11)C24—H24A0.9800
C9—H9A0.9800C24—H24B0.9800
P1—Au—S1173.44 (5)H11A—C11—H11B107.8
C1—S1—Au105.39 (17)C11—C12—C7113.5 (5)
C7—P1—C19106.1 (2)C11—C12—H12A108.9
C7—P1—C13108.4 (2)C7—C12—H12A108.9
C19—P1—C13105.9 (2)C11—C12—H12B108.9
C7—P1—Au114.59 (18)C7—C12—H12B108.9
C19—P1—Au108.69 (16)H12A—C12—H12B107.7
C13—P1—Au112.55 (16)C14—C13—C18110.5 (5)
C1—O1—C5116.3 (4)C14—C13—P1111.4 (4)
C1—N1—C2A116.2 (12)C18—C13—P1109.9 (3)
C1—N1—C2121.2 (9)C14—C13—H13108.3
C2A—N1—C29.0 (14)C18—C13—H13108.3
N1—C1—O1120.3 (5)P1—C13—H13108.3
N1—C1—S1127.9 (4)C13—C14—C15110.9 (6)
O1—C1—S1111.8 (4)C13—C14—H14A109.5
C4—C2—N1108.7 (15)C15—C14—H14A109.5
C4—C2—C3109.3 (15)C13—C14—H14B109.5
N1—C2—C3111.9 (17)C15—C14—H14B109.5
C4—C2—H2109.0H14A—C14—H14B108.0
N1—C2—H2109.0C16—C15—C14112.7 (6)
C3—C2—H2109.0C16—C15—H15A109.0
C4A—C2A—N1103 (3)C14—C15—H15A109.0
C4A—C2A—C3A110 (2)C16—C15—H15B109.0
N1—C2A—C3A104 (3)C14—C15—H15B109.0
C4A—C2A—H2A113.1H15A—C15—H15B107.8
N1—C2A—H2A113.1C15—C16—C17110.0 (6)
C3A—C2A—H2A113.1C15—C16—H16A109.7
C2A—C3A—H3D109.5C17—C16—H16A109.7
C2A—C3A—H3E109.5C15—C16—H16B109.7
H3D—C3A—H3E109.5C17—C16—H16B109.7
C2A—C3A—H3F109.5H16A—C16—H16B108.2
H3D—C3A—H3F109.5C16—C17—C18111.9 (6)
H3E—C3A—H3F109.5C16—C17—H17A109.2
C2A—C4A—H4D109.5C18—C17—H17A109.2
C2A—C4A—H4E109.5C16—C17—H17B109.2
H4D—C4A—H4E109.5C18—C17—H17B109.2
C2A—C4A—H4F109.5H17A—C17—H17B107.9
H4D—C4A—H4F109.5C13—C18—C17110.5 (5)
H4E—C4A—H4F109.5C13—C18—H18A109.6
O1—C5—C6107.2 (5)C17—C18—H18A109.6
O1—C5—H5A110.3C13—C18—H18B109.6
C6—C5—H5A110.3C17—C18—H18B109.6
O1—C5—H5B110.3H18A—C18—H18B108.1
C6—C5—H5B110.3C24—C19—C20110.4 (4)
H5A—C5—H5B108.5C24—C19—P1116.4 (4)
C5—C6—H6A109.5C20—C19—P1111.2 (4)
C5—C6—H6B109.5C24—C19—H19106.0
H6A—C6—H6B109.5C20—C19—H19106.0
C5—C6—H6C109.5P1—C19—H19106.0
H6A—C6—H6C109.5C21—C20—C19111.0 (5)
H6B—C6—H6C109.5C21—C20—H20A109.4
C8—C7—C12111.1 (5)C19—C20—H20A109.4
C8—C7—P1113.6 (4)C21—C20—H20B109.4
C12—C7—P1116.5 (4)C19—C20—H20B109.4
C8—C7—H7104.8H20A—C20—H20B108.0
C12—C7—H7104.8C22—C21—C20111.0 (5)
P1—C7—H7104.8C22—C21—H21A109.4
C7—C8—C9111.9 (5)C20—C21—H21A109.4
C7—C8—H8A109.2C22—C21—H21B109.4
C9—C8—H8A109.2C20—C21—H21B109.4
C7—C8—H8B109.2H21A—C21—H21B108.0
C9—C8—H8B109.2C21—C22—C23111.1 (5)
H8A—C8—H8B107.9C21—C22—H22A109.4
C8—C9—C10109.4 (6)C23—C22—H22A109.4
C8—C9—H9A109.8C21—C22—H22B109.4
C10—C9—H9A109.8C23—C22—H22B109.4
C8—C9—H9B109.8H22A—C22—H22B108.0
C10—C9—H9B109.8C22—C23—C24112.0 (5)
H9A—C9—H9B108.2C22—C23—H23A109.2
C11—C10—C9111.4 (6)C24—C23—H23A109.2
C11—C10—H10A109.4C22—C23—H23B109.2
C9—C10—H10A109.4C24—C23—H23B109.2
C11—C10—H10B109.4H23A—C23—H23B107.9
C9—C10—H10B109.4C19—C24—C23110.4 (5)
H10A—C10—H10B108.0C19—C24—H24A109.6
C10—C11—C12112.8 (6)C23—C24—H24A109.6
C10—C11—H11A109.0C19—C24—H24B109.6
C12—C11—H11A109.0C23—C24—H24B109.6
C10—C11—H11B109.0H24A—C24—H24B108.1
C12—C11—H11B109.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5427).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography