PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1418–o1419.
Published online 2010 May 22. doi:  10.1107/S1600536810018210
PMCID: PMC2979380

2-Amino-5-chloro­pyridinium salicylate

Abstract

In the crystal structure of the title salt, C5H6ClN2 +·C7H5O3 , the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H(...)O hydrogen bonds, forming R 2 2(8) ring motifs. These motifs are centrosymmetrically paired via N—H(...)O hydrogen bonds, forming a complementary donor–donor–acceptor–acceptor (DDAA) array. A typical intra­molecular O—H(...)O hydrogen bond is also observed in the salicylate anion. The crystal structure is further stabilized by weak C—H(...)π inter­actions.

Related literature

For 2-amino­pyridines, see: Gellert & Hsu (1988 [triangle]); Banerjee & Murugavel (2004 [triangle]); Bis & Zaworotko (2005 [triangle]); Bis et al. (2006 [triangle]) and for salicylic acid, see: Cochran (1953 [triangle]); Singh & Vijayan (1974 [triangle]); Varughese & Kartha (1982 [triangle]). For related structures, see: Hemamalini & Fun (2010a [triangle],b [triangle],c [triangle]). Pourayoubi et al. (2007 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]) and for hydrogen-bonding patterns in organic salts, see: Baskar Raj et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1418-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C7H5O3
  • M r = 266.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1418-efi1.jpg
  • a = 6.7403 (6) Å
  • b = 14.5574 (12) Å
  • c = 13.2857 (9) Å
  • β = 115.550 (4)°
  • V = 1176.13 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 100 K
  • 0.38 × 0.34 × 0.23 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.887, T max = 0.929
  • 19132 measured reflections
  • 5144 independent reflections
  • 4405 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.124
  • S = 1.17
  • 5144 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018210/sj5004sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018210/sj5004Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Gellert & Hsu, 1988; Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis et al., 2006). A series of similar complexes formed from 2-amino-5-chloropyridine and carboxylates has been reported previously (Hemamalini & Fun, 2010a,b,c). Salicylic acid (Cochran, 1953) and its derivatives are widely used as analgesic. They are also used for various gastric tympany and externally as antiseptic and antifungal agents for various skin conditions. The crystal structure of salicylic acid and its complexes, for example, antipyrine-salicylic acid (salipyrine) (Singh & Vijayan, 1974) and piperazinedione-salicylic acid (1:2) (Varughese & Kartha, 1982), have been reported in literature. In a continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains one 2-amino-5-chloropyridinium cation and one salicylate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-chloropyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.87 (8)°, compared to the corresponding angle of 118.11 (12)° in neutral 2-amino-5-chloropyridine (Pourayoubi et al., 2007). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.020 (1) Å for atom Cl. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1···O2 and N2—H2A···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N—H···O hydrogen bonds, forming a complementary DDAA array (Baskar Raj et al. 2003). There is an intramolecular O1—H1B···O2 hydrogen bond in the salicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structure of 2-aminopyridinium salicylate (Gellert & Hsu, 1988). The crystal structure is further stabilized by weak C—H···π interactions (Table 1) involving the C7–C12 (centroid Cg1) ring.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and salicylic acid (69 mg, Merck) were mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. A dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.

Crystal data

C5H6ClN2+·C7H5O3F(000) = 552
Mr = 266.68Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8071 reflections
a = 6.7403 (6) Åθ = 2.8–35.0°
b = 14.5574 (12) ŵ = 0.33 mm1
c = 13.2857 (9) ÅT = 100 K
β = 115.550 (4)°Block, colourless
V = 1176.13 (16) Å30.38 × 0.34 × 0.23 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer5144 independent reflections
Radiation source: fine-focus sealed tube4405 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 35.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→9
Tmin = 0.887, Tmax = 0.929k = −23→23
19132 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.0671P)2 + 0.2275P] where P = (Fo2 + 2Fc2)/3
5144 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.19050 (4)0.904645 (18)0.14133 (2)0.02103 (8)
N10.41620 (13)0.90963 (5)0.37992 (7)0.01402 (14)
H10.48270.88880.44690.017*
N20.74627 (14)0.97248 (6)0.40024 (7)0.01929 (16)
H2A0.80720.95140.46720.023*
H2B0.82291.00300.37410.023*
C10.19743 (15)0.89260 (6)0.32167 (8)0.01479 (15)
H1A0.12250.85950.35440.018*
C20.08837 (15)0.92433 (7)0.21489 (7)0.01471 (15)
C30.20331 (15)0.97455 (7)0.16657 (7)0.01588 (15)
H30.12980.99650.09400.019*
C40.42261 (15)0.99101 (7)0.22608 (7)0.01550 (15)
H40.49921.02380.19410.019*
C50.53371 (15)0.95784 (6)0.33713 (7)0.01379 (15)
O10.56169 (12)0.72179 (6)0.25181 (6)0.01955 (15)
H1B0.52990.70700.18710.029*
O20.62190 (11)0.65244 (5)0.09104 (6)0.01729 (14)
O30.95143 (13)0.59845 (5)0.11872 (6)0.01772 (14)
C70.77978 (15)0.70954 (6)0.31440 (7)0.01377 (15)
C80.86682 (17)0.73401 (7)0.42726 (8)0.01670 (16)
H80.77540.75830.45670.020*
C91.08961 (17)0.72202 (7)0.49541 (8)0.01810 (17)
H91.14640.73800.57040.022*
C101.22897 (16)0.68615 (7)0.45190 (8)0.01796 (17)
H101.37820.67870.49750.022*
C111.14261 (15)0.66179 (6)0.34034 (8)0.01524 (15)
H111.23530.63820.31130.018*
C120.91805 (14)0.67199 (6)0.27039 (7)0.01249 (14)
C130.82718 (15)0.63875 (6)0.15205 (7)0.01318 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01164 (11)0.02568 (13)0.02128 (12)−0.00140 (7)0.00287 (8)−0.00279 (8)
N10.0125 (3)0.0153 (3)0.0128 (3)−0.0010 (2)0.0041 (2)0.0018 (2)
N20.0127 (3)0.0256 (4)0.0160 (3)−0.0046 (3)0.0029 (3)0.0045 (3)
C10.0129 (3)0.0144 (4)0.0164 (4)−0.0011 (3)0.0057 (3)−0.0001 (3)
C20.0116 (3)0.0160 (4)0.0147 (3)−0.0002 (3)0.0039 (3)−0.0016 (3)
C30.0148 (4)0.0178 (4)0.0127 (3)0.0013 (3)0.0038 (3)0.0009 (3)
C40.0150 (4)0.0173 (4)0.0136 (3)−0.0003 (3)0.0056 (3)0.0025 (3)
C50.0122 (3)0.0149 (4)0.0131 (3)−0.0006 (3)0.0044 (3)0.0007 (3)
O10.0123 (3)0.0292 (4)0.0164 (3)0.0026 (2)0.0054 (2)−0.0033 (3)
O20.0128 (3)0.0237 (3)0.0128 (3)0.0018 (2)0.0031 (2)−0.0024 (2)
O30.0176 (3)0.0215 (3)0.0145 (3)0.0046 (2)0.0074 (3)−0.0015 (2)
C70.0133 (3)0.0146 (3)0.0134 (3)−0.0001 (3)0.0057 (3)−0.0004 (3)
C80.0184 (4)0.0189 (4)0.0139 (3)0.0001 (3)0.0079 (3)−0.0016 (3)
C90.0209 (4)0.0187 (4)0.0117 (3)−0.0012 (3)0.0042 (3)−0.0008 (3)
C100.0158 (4)0.0181 (4)0.0150 (4)0.0010 (3)0.0019 (3)0.0000 (3)
C110.0133 (3)0.0153 (4)0.0155 (3)0.0012 (3)0.0047 (3)−0.0005 (3)
C120.0123 (3)0.0130 (3)0.0116 (3)0.0004 (3)0.0047 (3)−0.0001 (3)
C130.0138 (3)0.0135 (3)0.0118 (3)0.0004 (3)0.0052 (3)0.0004 (3)

Geometric parameters (Å, °)

Cl1—C21.7280 (9)O1—H1B0.8200
N1—C51.3534 (12)O2—C131.2821 (11)
N1—C11.3603 (12)O3—C131.2496 (11)
N1—H10.8600C7—C81.4002 (13)
N2—C51.3285 (12)C7—C121.4069 (12)
N2—H2A0.8600C8—C91.3901 (14)
N2—H2B0.8600C8—H80.9300
C1—C21.3662 (13)C9—C101.3992 (14)
C1—H1A0.9300C9—H90.9300
C2—C31.4057 (13)C10—C111.3846 (13)
C3—C41.3635 (13)C10—H100.9300
C3—H30.9300C11—C121.4012 (13)
C4—C51.4204 (12)C11—H110.9300
C4—H40.9300C12—C131.5001 (12)
O1—C71.3527 (11)
C5—N1—C1122.87 (8)O1—C7—C8117.84 (8)
C5—N1—H1118.6O1—C7—C12122.33 (8)
C1—N1—H1118.6C8—C7—C12119.81 (8)
C5—N2—H2A120.0C9—C8—C7120.10 (8)
C5—N2—H2B120.0C9—C8—H8119.9
H2A—N2—H2B120.0C7—C8—H8119.9
N1—C1—C2119.66 (8)C8—C9—C10120.45 (8)
N1—C1—H1A120.2C8—C9—H9119.8
C2—C1—H1A120.2C10—C9—H9119.8
C1—C2—C3119.63 (8)C11—C10—C9119.39 (9)
C1—C2—Cl1119.87 (7)C11—C10—H10120.3
C3—C2—Cl1120.48 (7)C9—C10—H10120.3
C4—C3—C2119.98 (8)C10—C11—C12121.20 (8)
C4—C3—H3120.0C10—C11—H11119.4
C2—C3—H3120.0C12—C11—H11119.4
C3—C4—C5119.78 (8)C11—C12—C7119.03 (8)
C3—C4—H4120.1C11—C12—C13119.80 (8)
C5—C4—H4120.1C7—C12—C13121.11 (8)
N2—C5—N1119.03 (8)O3—C13—O2123.67 (8)
N2—C5—C4122.89 (8)O3—C13—C12119.32 (8)
N1—C5—C4118.08 (8)O2—C13—C12117.00 (7)
C7—O1—H1B109.5
C5—N1—C1—C20.46 (14)C8—C9—C10—C11−0.61 (15)
N1—C1—C2—C3−0.25 (14)C9—C10—C11—C12−0.31 (15)
N1—C1—C2—Cl1−178.88 (7)C10—C11—C12—C71.35 (14)
C1—C2—C3—C40.27 (14)C10—C11—C12—C13−175.67 (9)
Cl1—C2—C3—C4178.89 (7)O1—C7—C12—C11179.72 (8)
C2—C3—C4—C5−0.47 (14)C8—C7—C12—C11−1.48 (13)
C1—N1—C5—N2179.07 (9)O1—C7—C12—C13−3.30 (14)
C1—N1—C5—C4−0.64 (13)C8—C7—C12—C13175.51 (8)
C3—C4—C5—N2−179.05 (9)C11—C12—C13—O33.25 (13)
C3—C4—C5—N10.64 (13)C7—C12—C13—O3−173.71 (8)
O1—C7—C8—C9179.44 (9)C11—C12—C13—O2−177.95 (8)
C12—C7—C8—C90.58 (14)C7—C12—C13—O25.09 (13)
C7—C8—C9—C100.47 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.832.6928 (10)178
O1—H1B···O20.821.822.5483 (11)147
N2—H2A···O3i0.861.962.8181 (11)178
N2—H2B···O3ii0.862.032.8321 (13)154
C1—H1A···Cg1iii0.932.573.3680 (11)144

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5004).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des.4, 545–552.
  • Baskar Raj, S., Stanley, N., Muthiah, P. T., Bocelli, G., Ollá, R. & Cantoni, A. (2003). Cryst. Growth Des.3 567–571.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des.6, 2648–2650.
  • Bis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des.5, 1169–1179.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cochran, W. (1953). Acta Cryst.6, 260–268.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313. [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o464–o465. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o557. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o783–o784. [PMC free article] [PubMed]
  • Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557–562.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Varughese, K. I. & Kartha, G. (1982). Acta Cryst. B38, 301–302.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography