PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1392.
Published online 2010 May 19. doi:  10.1107/S1600536810017800
PMCID: PMC2979379

Redetermnation of lagochiline monohydrate

Abstract

In the title compound, C20H36O5·H2O, previously studied by film methods [Vorontsova et al. (1975 [triangle]). Izvest. USSR Ser. Chem. 2, 338–343], the H atoms have been located and the absolute structure (seven stereogenic centres) established. An intra­molecular O—H(...)O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by O—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis­(hydroxy­meth­yl)-12-(2-hydroxy­ethyl)-2,6,8-trimethyl­spiro­[bicyclo­[4.4.0]decane-7,5′-oxolane]-3-ol, see: Abramov et al. (1958 [triangle]); Akopov & Ibragimov (1961 [triangle]); Islamov et al. (1990 [triangle]); Izotova et al. (1997 [triangle]). For the previous structure determination, see: Vorontsova et al. (1975 [triangle]). For ring conformations, see: Evans & Boeyens (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1392-scheme1.jpg

Experimental

Crystal data

  • C20H36O5·H2O
  • M r = 374.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1392-efi1.jpg
  • a = 7.28495 (14) Å
  • b = 12.5933 (3) Å
  • c = 22.7324 (5) Å
  • V = 2085.51 (7) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.70 mm−1
  • T = 293 K
  • 0.05 × 0.01 × 0.01 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007 [triangle]) T min = 0.899, T max = 0.993
  • 8185 measured reflections
  • 4155 independent reflections
  • 3464 reflections with I > 2σ(I)
  • R int = 0.036
  • 3 standard reflections every 100 reflections intensity decay: 2.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.111
  • S = 0.98
  • 4155 reflections
  • 258 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1674 Friedel pairs
  • Flack parameter: 0.2 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017800/hb5443sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017800/hb5443Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this research by the Uzbek Academy of Sciences (grant Nos. FA-A12-T175 and FA-F3-T141) is gratefully acknowledged

supplementary crystallographic information

Comment

Lagochiline (I, scheme) is a biologically active diterpenoid isolated from plants of the Lagochilus kind (Abramov et al., 1958). It can be used as starting materials for preparing of the important medicinal substances, in particular as high effective hemostatic drug lagochiline (Akopov & Ibragimov,1961) and its synthetic derivative lagodene (Islamov et al., 1990). Lagochiline may be obtained in two crystal forms: as monohydrate at ambient conditions and as anhydrate by crystallization at high temperatures (Izotova et al.,1997). The crystal structure of the monohydrate form has been solved 35 years ago (Vorontsova et al., 1975). In this study we report improved structure of the lagochiline monohydrate. Six-membered rings A and B are slightly distorted from the chair form and trans-conjugated, while five-membered ring C is in the half-chair conformation (Evans & Boeyens, 1989).The molecule I has following 7 asymmetric atoms - C3, C4, C5, C8, C9, C10, C13. The value of the Flack parameters 0.2 (2) (Flack, 1983) allows to establish the absolute configuration of the asymmetric centers as: C(3)—S, C(4)—R, C(5)—S, C(8)—R, C(9)—R, C(10)—S, C(13)—S (Spek, 2009). Lagochiline molecule has intramolecular H-bond [H···O 1.87 (4) Å] between O(4)—H and O(5) atoms (Table). Four hydroxyl groups of the molecule (Fig.1), showing protonodonor as well protonoacceptor properties, are involved in the formation of the complicated system of the intermolecular H-bonds in the crystalline state (Table). The water molecule is H-bonded to three molecules of lagochiline: as acceptor (O5—H···O1W) and twice as donors (O1W—H···O4, O1W—H···O3) of protons. In result, three molecules of lagochiline and one water molecule form two-dimensional sheet parallel to the [010]. These sheets are sewed one with another via H-bonds O(3)—H···O(2) and O(2)—H···O(3) into three-dimensional network.(Table)(Fig.2)

Experimental

The extracting of the lagochiline was preformed according to the method in Abramov et al. (1958). Colourless needles of (I) were grown by slow evaporation of a solution in acetone.

Refinement

H-atoms bonded to carbon were positioned geometrically and refined using a riding model, with Uiso(H)=1.2 or 1.5 times Ueq(C). The positions of the hydrogen atoms at the hydroxyl groups of the lagochiline molecule and water have been gained from the difference Fourier map

Figures

Fig. 1.
Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.
Fig. 2.
Packing diagram of the title compound (I) viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines

Crystal data

C20H36O5·H2OF(000) = 824
Mr = 374.50Dx = 1.193 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 1210 reflections
a = 7.28495 (14) Åθ = 3.5–72.7°
b = 12.5933 (3) ŵ = 0.70 mm1
c = 22.7324 (5) ÅT = 293 K
V = 2085.51 (7) Å3Needle, colourless
Z = 40.05 × 0.01 × 0.01 mm

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer3464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 75.5°, θmin = 3.9°
/ω scansh = −8→5
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)k = −15→9
Tmin = 0.899, Tmax = 0.993l = −28→27
8185 measured reflections3 standard reflections every 100 reflections
4155 independent reflections intensity decay: 2.6%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.31 e Å3
4155 reflectionsΔρmin = −0.22 e Å3
258 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1674 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.2 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.73266 (16)0.98222 (10)0.12261 (5)0.0312 (3)
O21.0119 (2)1.17914 (15)0.04457 (8)0.0533 (4)
O30.3784 (2)1.16130 (15)0.02097 (8)0.0512 (4)
O40.8884 (3)1.03744 (17)0.37419 (7)0.0586 (5)
O50.5340 (3)1.0208 (2)0.38640 (8)0.0722 (6)
C10.9928 (3)0.96481 (16)0.21908 (8)0.0373 (4)
H1A1.10880.94700.20060.045*
H1B0.95041.03110.20220.045*
C21.0239 (3)0.98044 (17)0.28469 (8)0.0402 (4)
H2B1.06920.91500.30190.048*
H2C1.11541.03530.29090.048*
C30.8467 (3)1.01203 (16)0.31406 (8)0.0389 (4)
H3B0.80251.07690.29500.047*
C40.6962 (3)0.92706 (16)0.30779 (8)0.0387 (4)
C60.5214 (3)0.82102 (19)0.22804 (10)0.0495 (5)
H5B0.56080.75160.24150.059*
H5C0.41120.84020.24950.059*
C70.4793 (3)0.81639 (19)0.16225 (10)0.0525 (5)
H6A0.38890.76130.15510.063*
H6B0.42640.88350.15000.063*
C80.6494 (3)0.79387 (16)0.12516 (10)0.0473 (5)
H7A0.69760.72490.13780.057*
C90.8019 (3)0.87750 (15)0.13720 (8)0.0355 (4)
C100.8523 (3)0.87711 (14)0.20524 (8)0.0336 (4)
C50.6724 (3)0.90276 (14)0.24047 (8)0.0338 (4)
H10A0.62680.96920.22340.041*
C110.9684 (3)0.86188 (17)0.09623 (9)0.0451 (5)
H11A1.08170.87890.11660.054*
H11B0.97480.78910.08240.054*
C120.9369 (3)0.93826 (18)0.04478 (9)0.0453 (5)
H12A0.87180.90330.01300.054*
H12B1.05240.96560.02990.054*
C130.8204 (3)1.02751 (15)0.07156 (7)0.0336 (4)
C140.6692 (3)1.06778 (16)0.03011 (8)0.0369 (4)
H14A0.72571.1085−0.00130.044*
H14B0.60871.00710.01230.044*
C150.5266 (3)1.1358 (2)0.05985 (9)0.0508 (5)
H15A0.47881.09850.09390.061*
H15B0.58351.20100.07350.061*
C160.9416 (3)1.11968 (17)0.09280 (9)0.0403 (4)
H16A0.87001.16600.11800.048*
H16B1.04281.09170.11580.048*
C170.5903 (5)0.7817 (2)0.06070 (12)0.0669 (7)
H17A0.49570.72890.05790.100*
H17B0.69380.76020.03740.100*
H17C0.54440.84830.04640.100*
C180.5140 (3)0.9768 (2)0.32897 (10)0.0543 (5)
H18A0.47661.03200.30180.065*
H18B0.41900.92280.32950.065*
C190.7368 (4)0.8292 (2)0.34618 (10)0.0564 (6)
H19A0.74920.85080.38650.085*
H19B0.84880.79650.33330.085*
H19C0.63780.77930.34270.085*
C200.9383 (3)0.76842 (17)0.22045 (11)0.0516 (6)
H20A0.96980.76680.26140.077*
H20B1.04700.75800.19730.077*
H20C0.85170.71300.21210.077*
H2O1.112 (5)1.176 (2)0.0410 (13)0.052 (8)*
H3O0.415 (4)1.202 (2)0.0029 (13)0.044 (7)*
H4O0.789 (5)1.038 (3)0.3905 (14)0.065 (9)*
H5O0.443 (7)1.011 (4)0.4031 (18)0.103 (15)*
O1W0.2045 (3)1.0041 (3)0.43526 (9)0.1024 (11)
H1W0.195 (7)0.939 (4)0.459 (2)0.123*
H2W0.099 (8)0.999 (4)0.412 (2)0.123*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0317 (6)0.0317 (6)0.0301 (5)0.0050 (5)0.0028 (5)0.0027 (5)
O20.0319 (8)0.0696 (10)0.0584 (9)−0.0018 (7)0.0029 (7)0.0311 (8)
O30.0348 (7)0.0619 (10)0.0569 (9)0.0052 (7)0.0039 (7)0.0269 (8)
O40.0480 (9)0.0895 (13)0.0381 (8)−0.0059 (8)−0.0057 (7)−0.0100 (8)
O50.0485 (10)0.1158 (17)0.0522 (9)−0.0073 (11)0.0150 (8)−0.0232 (11)
C10.0300 (8)0.0431 (9)0.0390 (9)−0.0009 (8)0.0012 (8)0.0070 (8)
C20.0329 (9)0.0469 (10)0.0407 (9)−0.0035 (8)−0.0050 (8)0.0078 (8)
C30.0391 (10)0.0444 (10)0.0332 (8)0.0022 (8)−0.0061 (7)0.0019 (7)
C40.0351 (9)0.0455 (10)0.0354 (9)−0.0002 (8)0.0015 (8)0.0064 (8)
C60.0455 (11)0.0516 (11)0.0515 (11)−0.0167 (10)0.0020 (10)0.0032 (10)
C70.0499 (13)0.0519 (11)0.0557 (13)−0.0209 (10)−0.0035 (11)−0.0052 (10)
C80.0576 (13)0.0356 (10)0.0486 (11)−0.0041 (9)−0.0036 (10)−0.0061 (8)
C90.0377 (9)0.0311 (8)0.0378 (9)0.0071 (7)−0.0005 (7)0.0001 (7)
C100.0355 (9)0.0282 (8)0.0372 (9)0.0053 (7)0.0011 (7)0.0048 (7)
C50.0337 (9)0.0324 (8)0.0352 (8)−0.0015 (7)−0.0021 (7)0.0068 (7)
C110.0489 (12)0.0437 (10)0.0426 (10)0.0164 (9)0.0054 (9)−0.0039 (8)
C120.0468 (11)0.0524 (11)0.0368 (9)0.0135 (9)0.0084 (8)−0.0008 (9)
C130.0329 (8)0.0395 (9)0.0284 (8)0.0046 (8)0.0030 (7)0.0032 (7)
C140.0365 (10)0.0444 (9)0.0297 (8)0.0017 (8)−0.0011 (7)0.0026 (7)
C150.0469 (11)0.0659 (13)0.0396 (10)0.0200 (11)0.0006 (9)0.0080 (10)
C160.0348 (10)0.0479 (10)0.0382 (9)−0.0012 (8)0.0010 (7)0.0109 (8)
C170.0856 (19)0.0593 (14)0.0558 (14)−0.0175 (14)−0.0086 (13)−0.0154 (12)
C180.0393 (11)0.0784 (15)0.0453 (10)−0.0003 (11)0.0036 (9)−0.0044 (11)
C190.0661 (15)0.0584 (13)0.0447 (11)−0.0082 (12)0.0003 (11)0.0210 (11)
C200.0593 (14)0.0355 (10)0.0600 (13)0.0172 (9)−0.0007 (11)0.0073 (9)
O1W0.0453 (10)0.200 (3)0.0617 (12)−0.0183 (15)−0.0003 (9)0.0361 (17)

Geometric parameters (Å, °)

O1—C131.442 (2)C9—C101.590 (3)
O1—C91.450 (2)C10—C201.545 (2)
O2—C161.423 (2)C10—C51.569 (3)
O2—H2O0.74 (3)C5—H10A0.9800
O3—C151.432 (3)C11—C121.532 (3)
O3—H3O0.71 (3)C11—H11A0.9700
O4—C31.436 (2)C11—H11B0.9700
O4—H4O0.81 (4)C12—C131.534 (3)
O5—C181.426 (3)C12—H12A0.9700
O5—H5O0.77 (5)C12—H12B0.9700
C1—C21.521 (3)C13—C141.536 (3)
C1—C101.538 (3)C13—C161.536 (3)
C1—H1A0.9700C14—C151.507 (3)
C1—H1B0.9700C14—H14A0.9700
C2—C31.507 (3)C14—H14B0.9700
C2—H2B0.9700C15—H15A0.9700
C2—H2C0.9700C15—H15B0.9700
C3—C41.539 (3)C16—H16A0.9700
C3—H3B0.9800C16—H16B0.9700
C4—C191.539 (3)C17—H17A0.9600
C4—C181.544 (3)C17—H17B0.9600
C4—C51.570 (3)C17—H17C0.9600
C6—C71.528 (3)C18—H18A0.9700
C6—C51.533 (3)C18—H18B0.9700
C6—H5B0.9700C19—H19A0.9600
C6—H5C0.9700C19—H19B0.9600
C7—C81.526 (3)C19—H19C0.9600
C7—H6A0.9700C20—H20A0.9600
C7—H6B0.9700C20—H20B0.9600
C8—C171.535 (3)C20—H20C0.9600
C8—C91.555 (3)O1W—H1W0.98 (5)
C8—H7A0.9800O1W—H2W0.94 (5)
C9—C111.542 (3)
C13—O1—C9112.92 (13)C10—C5—H10A104.9
C16—O2—H2O114 (2)C4—C5—H10A104.9
C15—O3—H3O103 (2)C12—C11—C9105.25 (16)
C3—O4—H4O104 (2)C12—C11—H11A110.7
C18—O5—H5O108 (3)C9—C11—H11A110.7
C2—C1—C10113.10 (15)C12—C11—H11B110.7
C2—C1—H1A109.0C9—C11—H11B110.7
C10—C1—H1A109.0H11A—C11—H11B108.8
C2—C1—H1B109.0C11—C12—C13103.90 (15)
C10—C1—H1B109.0C11—C12—H12A111.0
H1A—C1—H1B107.8C13—C12—H12A111.0
C3—C2—C1109.95 (15)C11—C12—H12B111.0
C3—C2—H2B109.7C13—C12—H12B111.0
C1—C2—H2B109.7H12A—C12—H12B109.0
C3—C2—H2C109.7O1—C13—C12105.94 (15)
C1—C2—H2C109.7O1—C13—C14107.83 (14)
H2B—C2—H2C108.2C12—C13—C14113.27 (16)
O4—C3—C2107.42 (16)O1—C13—C16107.50 (14)
O4—C3—C4113.20 (17)C12—C13—C16111.15 (17)
C2—C3—C4112.69 (17)C14—C13—C16110.82 (16)
O4—C3—H3B107.8C15—C14—C13114.03 (15)
C2—C3—H3B107.8C15—C14—H14A108.7
C4—C3—H3B107.8C13—C14—H14A108.7
C3—C4—C19111.55 (18)C15—C14—H14B108.7
C3—C4—C18107.55 (18)C13—C14—H14B108.7
C19—C4—C18108.23 (19)H14A—C14—H14B107.6
C3—C4—C5107.74 (15)O3—C15—C14111.75 (18)
C19—C4—C5114.70 (18)O3—C15—H15A109.3
C18—C4—C5106.74 (16)C14—C15—H15A109.3
C7—C6—C5110.50 (17)O3—C15—H15B109.3
C7—C6—H5B109.5C14—C15—H15B109.3
C5—C6—H5B109.5H15A—C15—H15B107.9
C7—C6—H5C109.5O2—C16—C13111.24 (16)
C5—C6—H5C109.5O2—C16—H16A109.4
H5B—C6—H5C108.1C13—C16—H16A109.4
C8—C7—C6112.6 (2)O2—C16—H16B109.4
C8—C7—H6A109.1C13—C16—H16B109.4
C6—C7—H6A109.1H16A—C16—H16B108.0
C8—C7—H6B109.1C8—C17—H17A109.5
C6—C7—H6B109.1C8—C17—H17B109.5
H6A—C7—H6B107.8H17A—C17—H17B109.5
C7—C8—C17108.6 (2)C8—C17—H17C109.5
C7—C8—C9110.92 (16)H17A—C17—H17C109.5
C17—C8—C9115.9 (2)H17B—C17—H17C109.5
C7—C8—H7A107.0O5—C18—C4110.81 (19)
C17—C8—H7A107.0O5—C18—H18A109.5
C9—C8—H7A107.0C4—C18—H18A109.5
O1—C9—C11104.56 (15)O5—C18—H18B109.5
O1—C9—C8109.09 (15)C4—C18—H18B109.5
C11—C9—C8111.67 (17)H18A—C18—H18B108.1
O1—C9—C10107.80 (14)C4—C19—H19A109.5
C11—C9—C10113.92 (16)C4—C19—H19B109.5
C8—C9—C10109.53 (16)H19A—C19—H19B109.5
C1—C10—C20108.68 (17)C4—C19—H19C109.5
C1—C10—C5107.68 (15)H19A—C19—H19C109.5
C20—C10—C5114.02 (16)H19B—C19—H19C109.5
C1—C10—C9110.52 (14)C10—C20—H20A109.5
C20—C10—C9108.31 (16)C10—C20—H20B109.5
C5—C10—C9107.63 (14)H20A—C20—H20B109.5
C6—C5—C10111.53 (16)C10—C20—H20C109.5
C6—C5—C4112.94 (16)H20A—C20—H20C109.5
C10—C5—C4116.43 (15)H20B—C20—H20C109.5
C6—C5—H10A104.9H1W—O1W—H2W101 (4)
C10—C1—C2—C3−60.6 (2)C7—C6—C5—C4169.13 (19)
C1—C2—C3—O4−173.49 (17)C1—C10—C5—C6178.34 (16)
C1—C2—C3—C461.1 (2)C20—C10—C5—C6−61.0 (2)
O4—C3—C4—C19−50.2 (2)C9—C10—C5—C659.18 (19)
C2—C3—C4—C1971.9 (2)C1—C10—C5—C4−50.0 (2)
O4—C3—C4—C1868.3 (2)C20—C10—C5—C470.6 (2)
C2—C3—C4—C18−169.56 (16)C9—C10—C5—C4−169.21 (15)
O4—C3—C4—C5−176.98 (17)C3—C4—C5—C6−178.34 (17)
C2—C3—C4—C5−54.8 (2)C19—C4—C5—C656.8 (2)
C5—C6—C7—C855.4 (3)C18—C4—C5—C6−63.1 (2)
C6—C7—C8—C17175.38 (19)C3—C4—C5—C1050.7 (2)
C6—C7—C8—C9−56.2 (2)C19—C4—C5—C10−74.2 (2)
C13—O1—C9—C118.33 (19)C18—C4—C5—C10165.97 (17)
C13—O1—C9—C8−111.25 (16)O1—C9—C11—C12−22.3 (2)
C13—O1—C9—C10129.90 (15)C8—C9—C11—C1295.5 (2)
C7—C8—C9—O1−60.0 (2)C10—C9—C11—C12−139.73 (17)
C17—C8—C9—O164.4 (2)C9—C11—C12—C1327.4 (2)
C7—C8—C9—C11−175.03 (18)C9—O1—C13—C129.1 (2)
C17—C8—C9—C11−50.7 (3)C9—O1—C13—C14130.62 (16)
C7—C8—C9—C1057.8 (2)C9—O1—C13—C16−109.86 (16)
C17—C8—C9—C10−177.9 (2)C11—C12—C13—O1−22.6 (2)
C2—C1—C10—C20−70.5 (2)C11—C12—C13—C14−140.56 (18)
C2—C1—C10—C553.5 (2)C11—C12—C13—C1693.9 (2)
C2—C1—C10—C9170.76 (15)O1—C13—C14—C1549.4 (2)
O1—C9—C10—C1−57.31 (19)C12—C13—C14—C15166.26 (19)
C11—C9—C10—C158.2 (2)C16—C13—C14—C15−68.0 (2)
C8—C9—C10—C1−175.89 (16)C13—C14—C15—O3−173.44 (18)
O1—C9—C10—C20−176.26 (16)O1—C13—C16—O2−171.20 (15)
C11—C9—C10—C20−60.7 (2)C12—C13—C16—O273.3 (2)
C8—C9—C10—C2065.2 (2)C14—C13—C16—O2−53.6 (2)
O1—C9—C10—C560.03 (18)C3—C4—C18—O5−53.1 (3)
C11—C9—C10—C5175.57 (16)C19—C4—C18—O567.6 (3)
C8—C9—C10—C5−58.55 (18)C5—C4—C18—O5−168.5 (2)
C7—C6—C5—C10−57.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4O···O50.81 (4)1.87 (4)2.605 (3)149 (3)
O5—H5O···O1W0.77 (5)1.89 (5)2.653 (3)171 (5)
O2—H2O···O3i0.74 (3)2.00 (4)2.732 (2)173 (3)
O3—H3O···O2ii0.71 (3)1.98 (3)2.684 (2)177 (3)
O1W—H1W···O3iii0.98 (5)1.97 (5)2.916 (4)161 (4)
O1W—H2W···O4iv0.94 (5)1.82 (5)2.722 (3)160 (5)

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+5/2, −z; (iii) −x+1/2, −y+2, z+1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5443).

References

  • Abramov, M. M., Japarova, S. A. & Ikramov, M. I. (1958). Uzb. Biol. Zh.6, 55–60
  • Akopov, I. E. & Ibragimov, I. I. (1961). Pharmacol. Toxicol.6, 39–40.
  • Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Islamov, R., Zainutdinov, U. N., Aslanov, Kh. A., Sadykov, A. S., Danil’chuk, D. N., Yankovskiy, B. A. & Zacharov, V. P. (1990). USSR Patent AS 1293990.
  • Izotova, L. Yu., Beketov, K. M., Talipov, S. A. & Ibragimov, B. T. (1997). Pol. J. Chem.71, 1037–1044.
  • Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vorontsova, L. G., Tchijov, O. S., Tarnopolsky, B. L. & Andrianov, V. I. (1975). Izv. USSR Ser. Chem 2, 338–343.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography