PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1254.
Published online 2010 May 8. doi:  10.1107/S1600536810015503
PMCID: PMC2979372

4-Methyl­pyridinium 2-carb­oxy-4,5-dichloro­benzoate monohydrate

Abstract

In the structure of the 1:1 proton-transfer compound of 4-methyl­pyridine (γ-picoline) with 4,5-dichloro­phthalic acid, C6H8N+·C8H3Cl2O4 ·H2O, determined at 200 K, the 4,5-dichloro­phthalate anions are bridged by the water mol­ecule through O—H(...)Ocarbox­yl hydrogen bonds, giving zigzag chains which extend along the c-axis direction. The 4-methyl­pyridinium cations are linked to the chains through single N—H(...)Owater hydrogen bonds and occupy the voids within the chains in the one-dimensional structure. The anions have the common ‘planar’ conformation with a short intra­molecular O—H(...)Ocarbox­yl hydrogen bond.

Related literature

For the structures of other hydrogen 4,5-dichloro­phthalate salts, see: Mallinson et al. (2003 [triangle]); Bozkurt et al. (2006 [triangle]); Smith et al. (2007 [triangle], 2008a [triangle],b [triangle], 2009 [triangle], 2009a [triangle],b [triangle]); Smith & Wermuth (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1254-scheme1.jpg

Experimental

Crystal data

  • C6H8N+·C8H3Cl2O4 ·H2O
  • M r = 346.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1254-efi1.jpg
  • a = 3.8398 (3) Å
  • b = 29.5531 (17) Å
  • c = 12.9855 (7) Å
  • β = 90.054 (6)°
  • V = 1473.57 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 200 K
  • 0.30 × 0.20 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.930, T max = 0.980
  • 8898 measured reflections
  • 2579 independent reflections
  • 2156 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.129
  • S = 1.29
  • 2579 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015503/jj2029sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015503/jj2029Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the Faculty of Science and Technology, Queensland University of Technology.

supplementary crystallographic information

Comment

The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2007, 2008a, 2008b, 2009a, 2009b; Smith et al., 2009; Smith & Wermuth, 2010a, 2010b). With the majority of these structures, e.g. the brucinium salt (Smith et al., 2007), the DCPA anions are essentially planar (the 'planar' conformation) with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were also found in the structure of the hydrated 1:1 proton-transfer compound of DCPA with 4-methylpyridine (γ-picoline), the title compound C6H8N+ C8H3Cl2O4- . H2O (I), reported here.

In (I) (Fig. 1), the 4,5-dichlorophthalate anions are bridged by the water molecule through O–H···Ocarboxyl hydrogen bonds giving zig-zag chains which extend along the c axial direction of the unit cell (Fig. 2). The 4-methylpyridine cations are linked to the chains through single N–H···Owater hydrogen bonds and occupy the voids formed within the chains, in the one-dimensional structure. There are no cation–anion π–π ring stacking interactions such as are present in some of the DCPA compounds.

The DCPA anion has the 'planar' conformation [torsion angles C2–C1–C11–O11, -173.2 (3)°: C1–C2–C21–O22, 169.9 (3)°], with the short intramolecular O–H···Ocarboxyl hydrogen bond [2.376 (4) Å]. Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.9 (3)° and C2–C1–C11, 128.8 (3)°]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.527 (5) and 1.531 (5) Å] are features inherent in the 'planar' DCPA anions in the overall series of 1:1 proton-transfer compounds.

Experimental

The title compound (I) was synthesized by heating together for 10 min under reflux 1 mmol quantities of γ-picoline and 4,5-dichlorophthalic acid in 50 ml of methanol. The product after complete room-temperature evaporation of the hot-filtered solution was microcrystalline. Recrystallization from water gave colourless flat needles (m.p. 445 K) from which a specimen suitable for X-ray analysis was cleaved.

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–Haromatic = 0.93 Å and C–Haliphatic = 0.98 Å] and treated as riding models with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular configuration and atom numbering scheme for the 4-methylpyridinium cation, the hydrogen 4,5-dichlorophthalate anion and the water molecule of hydration (O1W) in (I). Non-H atoms are shown as 50% probability displacement ellipsoids with inter-species ...
Fig. 2.
The one-dimensional hydrogen-bonded chain structures extending down the c direction in the unit cell of (I). For symmetry code see Table 1.

Crystal data

C6H8N+·C8H3Cl2O4·H2OF(000) = 712
Mr = 346.15Dx = 1.560 Mg m3
Monoclinic, P21/nMelting point: 445 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 3.8398 (3) ÅCell parameters from 4516 reflections
b = 29.5531 (17) Åθ = 3.1–28.7°
c = 12.9855 (7) ŵ = 0.46 mm1
β = 90.054 (6)°T = 200 K
V = 1473.57 (16) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.08 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer2579 independent reflections
Radiation source: Enhance (Mo) X-ray source2156 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 16.08 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = −4→4
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −35→31
Tmin = 0.930, Tmax = 0.980l = −15→15
8898 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: geom'
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.29w = 1/[σ2(Fo2) + (0.042P)2 + 1.7305P] where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl40.1942 (3)−0.02601 (3)0.63754 (7)0.0379 (3)
Cl5−0.1079 (2)0.00515 (3)0.85706 (7)0.0372 (3)
O110.0394 (8)0.17470 (9)0.8599 (2)0.0471 (10)
O120.2068 (8)0.20432 (9)0.7127 (2)0.0490 (10)
O210.4257 (8)0.18118 (9)0.5499 (2)0.0504 (10)
O220.6118 (7)0.11959 (9)0.47323 (19)0.0399 (9)
C10.1694 (8)0.12249 (11)0.7262 (2)0.0233 (10)
C20.3066 (8)0.10876 (11)0.6304 (2)0.0225 (10)
C30.3086 (8)0.06268 (11)0.6068 (2)0.0249 (10)
C40.1817 (8)0.03024 (11)0.6731 (3)0.0252 (10)
C50.0513 (8)0.04386 (11)0.7687 (2)0.0252 (10)
C60.0428 (8)0.08917 (11)0.7929 (2)0.0254 (10)
C110.1371 (9)0.17020 (12)0.7704 (3)0.0328 (11)
C210.4622 (9)0.13795 (12)0.5446 (3)0.0291 (11)
N1A1.1032 (8)0.19332 (11)0.2708 (3)0.0411 (11)
C2A1.2276 (11)0.21031 (13)0.1826 (3)0.0447 (14)
C3A1.3735 (9)0.18251 (13)0.1103 (3)0.0370 (12)
C4A1.3940 (8)0.13645 (12)0.1288 (2)0.0282 (10)
C5A1.2671 (9)0.12034 (12)0.2211 (3)0.0333 (11)
C6A1.1180 (9)0.14896 (14)0.2913 (3)0.0369 (11)
C41A1.5391 (10)0.10520 (15)0.0494 (3)0.0463 (14)
O1W0.7863 (9)0.23983 (11)0.4193 (2)0.0462 (10)
H30.399300.053500.543800.0300*
H6−0.050700.098000.855800.0300*
H210.334 (15)0.191 (2)0.618 (5)0.100 (19)*
H1A1.012 (12)0.211 (2)0.315 (4)0.049 (10)*
H2A1.214700.241300.170400.0540*
H3A1.458500.194500.049000.0450*
H5A1.282800.089600.235800.0400*
H6A1.028100.137700.352700.0440*
H41A1.617100.12240−0.008900.0560*
H42A1.361700.084300.027900.0560*
H43A1.731700.088700.078100.0560*
H11W0.666 (13)0.2227 (18)0.449 (4)0.065 (17)*
H12W0.694 (11)0.2626 (17)0.405 (3)0.046 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl40.0516 (6)0.0224 (4)0.0396 (5)−0.0018 (4)0.0113 (4)−0.0043 (4)
Cl50.0483 (5)0.0316 (5)0.0318 (5)−0.0034 (4)0.0108 (4)0.0091 (4)
O110.074 (2)0.0310 (15)0.0363 (16)−0.0029 (13)0.0195 (14)−0.0095 (12)
O120.084 (2)0.0225 (14)0.0406 (16)0.0024 (13)0.0133 (15)0.0012 (12)
O210.083 (2)0.0280 (15)0.0403 (17)−0.0001 (14)0.0222 (15)0.0098 (12)
O220.0534 (16)0.0394 (15)0.0269 (14)0.0010 (12)0.0122 (12)0.0059 (11)
C10.0232 (17)0.0233 (17)0.0234 (17)0.0009 (13)−0.0027 (13)0.0001 (13)
C20.0225 (16)0.0244 (17)0.0206 (17)0.0021 (13)−0.0019 (13)0.0042 (13)
C30.0273 (17)0.0264 (18)0.0209 (16)0.0014 (13)0.0039 (13)−0.0017 (13)
C40.0281 (17)0.0212 (17)0.0264 (17)0.0023 (13)0.0023 (13)−0.0015 (13)
C50.0268 (17)0.0249 (17)0.0240 (17)0.0002 (13)0.0028 (13)0.0057 (14)
C60.0256 (17)0.0327 (19)0.0179 (16)0.0014 (14)0.0017 (13)−0.0036 (14)
C110.039 (2)0.0253 (19)0.034 (2)0.0018 (15)0.0015 (16)−0.0026 (15)
C210.0315 (19)0.032 (2)0.0237 (18)−0.0023 (14)0.0016 (14)0.0051 (15)
N1A0.0374 (18)0.043 (2)0.043 (2)0.0010 (14)−0.0022 (15)−0.0190 (16)
C2A0.046 (2)0.029 (2)0.059 (3)−0.0040 (17)0.001 (2)0.0014 (19)
C3A0.037 (2)0.040 (2)0.034 (2)−0.0036 (16)0.0039 (16)0.0114 (17)
C4A0.0237 (17)0.038 (2)0.0228 (17)−0.0011 (14)−0.0019 (13)−0.0018 (15)
C5A0.0339 (19)0.032 (2)0.034 (2)−0.0021 (15)−0.0002 (16)0.0050 (16)
C6A0.036 (2)0.050 (2)0.0248 (19)−0.0044 (17)0.0016 (15)0.0032 (17)
C41A0.037 (2)0.059 (3)0.043 (2)0.0042 (19)0.0065 (18)−0.013 (2)
O1W0.078 (2)0.0254 (16)0.0352 (16)0.0033 (16)0.0159 (15)0.0043 (13)

Geometric parameters (Å, °)

Cl4—C41.726 (3)C3—C41.378 (5)
Cl5—C51.732 (3)C4—C51.398 (5)
O11—C111.229 (5)C5—C61.376 (5)
O12—C111.285 (5)C3—H30.9300
O21—C211.287 (4)C6—H60.9300
O22—C211.218 (5)C2A—C3A1.368 (5)
O21—H211.00 (6)C3A—C4A1.385 (5)
O1W—H12W0.78 (5)C4A—C5A1.379 (5)
O1W—H11W0.79 (5)C4A—C41A1.493 (5)
N1A—C6A1.339 (5)C5A—C6A1.369 (5)
N1A—C2A1.339 (5)C2A—H2A0.9300
N1A—H1A0.85 (5)C3A—H3A0.9300
C1—C111.527 (5)C5A—H5A0.9300
C1—C61.399 (4)C6A—H6A0.9300
C1—C21.411 (4)C41A—H43A0.9600
C2—C31.396 (5)C41A—H41A0.9600
C2—C211.531 (5)C41A—H42A0.9600
C21—O21—H21112 (3)C4—C3—H3119.00
H11W—O1W—H12W114 (5)C2—C3—H3119.00
C2A—N1A—C6A121.5 (4)C1—C6—H6119.00
C2A—N1A—H1A120 (4)C5—C6—H6119.00
C6A—N1A—H1A119 (4)N1A—C2A—C3A120.6 (4)
C2—C1—C11128.9 (3)C2A—C3A—C4A119.7 (3)
C6—C1—C11112.9 (3)C3A—C4A—C41A120.7 (3)
C2—C1—C6118.3 (3)C3A—C4A—C5A118.1 (3)
C1—C2—C21128.8 (3)C5A—C4A—C41A121.3 (3)
C3—C2—C21112.8 (3)C4A—C5A—C6A120.9 (3)
C1—C2—C3118.4 (3)N1A—C6A—C5A119.4 (4)
C2—C3—C4122.7 (3)C3A—C2A—H2A120.00
C3—C4—C5118.8 (3)N1A—C2A—H2A120.00
Cl4—C4—C3119.5 (3)C2A—C3A—H3A120.00
Cl4—C4—C5121.7 (3)C4A—C3A—H3A120.00
Cl5—C5—C4121.7 (3)C6A—C5A—H5A120.00
C4—C5—C6119.4 (3)C4A—C5A—H5A120.00
Cl5—C5—C6118.9 (2)N1A—C6A—H6A120.00
C1—C6—C5122.4 (3)C5A—C6A—H6A120.00
O12—C11—C1119.2 (3)C4A—C41A—H42A109.00
O11—C11—C1118.7 (3)C4A—C41A—H43A109.00
O11—C11—O12122.1 (3)C4A—C41A—H41A110.00
O21—C21—O22122.3 (3)H41A—C41A—H43A110.00
O21—C21—C2118.5 (3)H42A—C41A—H43A109.00
O22—C21—C2119.2 (3)H41A—C41A—H42A109.00
C2A—N1A—C6A—C5A0.7 (5)C1—C2—C21—O22169.9 (3)
C6A—N1A—C2A—C3A0.2 (6)C1—C2—C3—C40.1 (5)
C6—C1—C2—C21−179.6 (3)C2—C3—C4—C5−1.2 (5)
C11—C1—C2—C210.3 (5)C2—C3—C4—Cl4180.0 (3)
C2—C1—C6—C50.7 (5)C3—C4—C5—Cl5−179.2 (2)
C11—C1—C6—C5−179.1 (3)Cl4—C4—C5—Cl5−0.4 (4)
C2—C1—C11—O11−173.2 (3)Cl4—C4—C5—C6−179.2 (2)
C2—C1—C11—O128.0 (5)C3—C4—C5—C62.0 (5)
C6—C1—C11—O116.7 (4)C4—C5—C6—C1−1.8 (5)
C11—C1—C2—C3180.0 (3)Cl5—C5—C6—C1179.4 (2)
C6—C1—C11—O12−172.2 (3)N1A—C2A—C3A—C4A−0.3 (6)
C6—C1—C2—C30.1 (4)C2A—C3A—C4A—C5A−0.5 (5)
C21—C2—C3—C4179.9 (3)C2A—C3A—C4A—C41A177.6 (3)
C1—C2—C21—O21−11.1 (5)C41A—C4A—C5A—C6A−176.6 (3)
C3—C2—C21—O21169.2 (3)C3A—C4A—C5A—C6A1.5 (5)
C3—C2—C21—O22−9.8 (4)C4A—C5A—C6A—N1A−1.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1W0.85 (5)1.82 (5)2.663 (5)170 (5)
O1W—H11W···O210.79 (5)2.02 (5)2.793 (4)168 (5)
O1W—H12W···O11i0.78 (5)2.03 (5)2.806 (4)170 (4)
O21—H21···O121.00 (6)1.38 (6)2.376 (4)180 (8)
C2A—H2A···O12i0.932.593.243 (5)128
C2A—H2A···O12ii0.932.543.147 (5)123
C6A—H6A···O220.932.303.181 (5)158

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2029).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc.125, 4259–4270. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133. [PMC free article] [PubMed]
  • Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. E66, o235. [PMC free article] [PubMed]
  • Smith, G., Wermuth, U. D. & Sagatys, D. S. (2009). Acta Cryst. C65, o131–o133. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276–o4277.
  • Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180–o183. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532–o536. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103–o107. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography