PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1488.
Published online 2010 May 29. doi:  10.1107/S1600536810019471
PMCID: PMC2979367

4-Sulfamoylanilinium chloride

Abstract

In the crystal structure of the title compound, C6H9N2O2S+·Cl, the chloride anions are sandwiched between layers of 4-sulfonamido­anilinium anions. The components interact by way of N—H(...)Cl and N—H(...)O hydrogen bonds, building up a three-dimensional network.

Related literature

For the biological activity of diamines, see: Pasini & Zunino (1987 [triangle]); Otsuka et al. (1990 [triangle]); Michalson & Smuszkovicz (1989 [triangle]); Reedijk et al. (1996 [triangle]). For their use in asymmetric catalysis, see: Blaser (1992 [triangle]). For related structures, see: Chatterjee et al. (1981 [triangle]); Gelbrich et al. (2008 [triangle]); Gelmboldt et al. (2004 [triangle]); Smith et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1488-scheme1.jpg

Experimental

Crystal data

  • C6H9N2O2S+·Cl
  • M r = 208.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1488-efi1.jpg
  • a = 7.4608 (2) Å
  • b = 7.7278 (2) Å
  • c = 31.694 (2) Å
  • V = 1827.35 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.982, T max = 0.994
  • 2906 measured reflections
  • 1989 independent reflections
  • 1442 reflections with I > 2σ(I)
  • R int = 0.033
  • 2 standard reflections every 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.182
  • S = 1.07
  • 1989 reflections
  • 110 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019471/dn2568sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019471/dn2568Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The diamine compounds are important in biologically active natural products (Pasini & Zunino, 1987; Otsuka et al., 1990), in medicinal chemistry (Michalson & Smuszkovicz, 1989; Reedijk, 1996). They are also used as chiral auxiliaries and chiral ligands in asymmetric catalysis (Blaser, 1992). Here, a new member of this family, (C6H9N2O2S)+.Cl-, is presented.

It was obtained during our investigations in organic chloride hybrids field. The crystal structure of the title compound contains a discrete cation with a protonated amino group (C6H9N2O2S)+.Cl- and a halide anion (Fig 1).

The molecular structure including both terminal N atoms has an all-trans conformation. The nitrogen N1 position is protonated in this structure and participates in hydrogen bonding with the chlorine anions. The layered crystal packing of 4-sulfonamidoanilinium chloride is shown in Fig 2. The cations form alterning layers of hydrophobic and hydrophilic zones along the c axis.

The chloride ions are located in the interlayer space. Two types of classical hydrogen bonds are observed: N—H···Cl and N—H···O . These interaction bonds link the cations and the anions together, forming a three-dimensional network and reinforcing the ionic structure cohesion ((Fig 3, Table 1). The organic cations interacts with the Cl- anion via hydrogen bonds, with N1—H···Cl distances ranging between 3.098 (3) Å and 3.191 (3) Å.

The packing is further consolidated through π-π stacking between symetry related benzene (3/2-x,-1/2+y,z) rings with centroid-to-centroid distance of 3.890 (2) Å and centroid-to-plane of 3.65 Å resulting in a slippage of 21°.

Selected geometrical parameters in (C6H9N2O2S)+ cation agree with those found in similar compounds, such as 4-aminobenzenesulfonamide (C6H8N2O2S) (Gelbrich et al., 2008), 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate ( Gelmboldt et al.,2004) and 4-sulfonamidoanilinium 3,5-dinitrosalicylate (C6H9N2O2S+.C7H3N2O7) (Smith et al., 2001).

Experimental

Colourless crystals of 4-sulfonamidoanilinium chloride suitable for single crystal X-ray analysis were obtained by slow evaporation at room temperature of an ethanol solution of sulphanilamide (Fluka, Purity >97%) and hydrochloric acid.

Refinement

All H atoms attached to N were located in a difference map and allowed to refine freely.

H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Chemical diagram of the title compound.
Fig. 2.
Part of the crystal structure illustrating the alternating layers of hydrophobic and hydrophilic zones, viewed along the b axis. H atoms have been omitted for clarity.
Fig. 3.
The crystal packing of the title compound, viewed along the a axis showing the N—H···Cl/O interactions (dotted line). H atoms not involved in hydrogen bonding (dashe dlines) have been omitted for clarity. Displacement ellipsoids ...

Crystal data

C6H9N2O2S+·ClF(000) = 864
Mr = 208.66Dx = 1.517 Mg m3
Orthorhombic, PbnbMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2abCell parameters from 25 reflections
a = 7.4608 (2) Åθ = 10–15°
b = 7.7278 (2) ŵ = 0.61 mm1
c = 31.694 (2) ÅT = 298 K
V = 1827.35 (13) Å3Prism, colourless
Z = 80.3 × 0.2 × 0.1 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 27.0°, θmin = 2.6°
Non–profiled ω/2θ scansh = −9→2
Absorption correction: ψ scan (North et al., 1968)k = −1→9
Tmin = 0.982, Tmax = 0.994l = −1→40
2906 measured reflections2 standard reflections every 120 min
1989 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1231P)2 + 0.2341P] where P = (Fo2 + 2Fc2)/3
1989 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al., 1968).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.01848 (14)0.91801 (12)0.80899 (3)0.0494 (3)
O10.0885 (5)1.0213 (4)0.78197 (10)0.0826 (11)
O2−0.1835 (5)0.9862 (4)0.82564 (9)0.0718 (10)
N10.4306 (4)0.7241 (3)0.95815 (9)0.0394 (6)
H1A0.48630.81850.96750.059*
H1B0.51140.64430.95120.059*
H1C0.35960.68280.97830.059*
N2−0.0703 (5)0.7452 (5)0.78407 (10)0.0623 (9)
H210.01270.70230.76940.075*
H22−0.13810.67330.79630.075*
C10.3224 (4)0.7679 (3)0.92096 (9)0.0317 (6)
C20.1373 (4)0.7587 (4)0.92407 (10)0.0402 (7)
H20.08330.72100.94890.048*
C30.0345 (4)0.8064 (5)0.88976 (10)0.0433 (7)
H3−0.08980.80260.89150.052*
C40.1162 (4)0.8597 (4)0.85296 (9)0.0368 (7)
C50.3026 (5)0.8677 (4)0.84957 (11)0.0438 (8)
H50.35630.90390.82460.053*
C60.4060 (4)0.8208 (4)0.88399 (11)0.0444 (7)
H60.53040.82460.88240.053*
Cl10.72981 (10)1.00078 (9)0.97197 (3)0.0408 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0590 (6)0.0496 (5)0.0396 (5)0.0060 (4)−0.0092 (4)0.0052 (4)
O10.097 (3)0.084 (2)0.066 (2)−0.0156 (19)−0.015 (2)0.0379 (16)
O20.0707 (18)0.084 (2)0.0607 (19)0.0399 (17)−0.0180 (16)−0.0076 (15)
N10.0340 (12)0.0321 (13)0.0521 (16)−0.0016 (10)−0.0096 (11)0.0030 (11)
N20.067 (2)0.075 (2)0.0450 (17)−0.0057 (18)−0.0046 (16)−0.0158 (15)
C10.0284 (12)0.0237 (12)0.0432 (16)0.0010 (11)−0.0005 (12)−0.0017 (11)
C20.0327 (15)0.0508 (17)0.0373 (15)−0.0017 (14)0.0024 (12)0.0058 (13)
C30.0273 (13)0.0593 (19)0.0431 (18)0.0005 (14)−0.0008 (13)0.0031 (15)
C40.0395 (16)0.0311 (14)0.0397 (17)0.0025 (12)−0.0044 (13)−0.0011 (12)
C50.0416 (17)0.0449 (18)0.0450 (19)−0.0025 (14)0.0098 (13)0.0050 (14)
C60.0306 (14)0.0488 (18)0.0536 (19)−0.0019 (14)0.0052 (14)0.0001 (15)
Cl10.0310 (4)0.0328 (5)0.0586 (6)−0.0038 (3)0.0016 (3)0.0013 (3)

Geometric parameters (Å, °)

S1—O11.417 (3)C1—C21.386 (4)
S1—O21.439 (4)C1—C61.389 (4)
S1—N21.599 (3)C2—C31.381 (4)
S1—C41.776 (3)C2—H20.9300
N1—C11.468 (4)C3—C41.379 (4)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C4—C51.396 (5)
N1—H1C0.8900C5—C61.384 (5)
N2—H210.8433C5—H50.9300
N2—H220.8457C6—H60.9300
O1—S1—O2119.8 (2)C6—C1—N1119.9 (3)
O1—S1—N2107.9 (2)C3—C2—C1118.9 (3)
O2—S1—N2106.3 (2)C3—C2—H2120.5
O1—S1—C4107.35 (18)C1—C2—H2120.5
O2—S1—C4106.81 (16)C4—C3—C2120.0 (3)
N2—S1—C4108.23 (17)C4—C3—H3120.0
C1—N1—H1A109.5C2—C3—H3120.0
C1—N1—H1B109.5C3—C4—C5121.2 (3)
H1A—N1—H1B109.5C3—C4—S1119.3 (2)
C1—N1—H1C109.5C5—C4—S1119.5 (2)
H1A—N1—H1C109.5C6—C5—C4118.9 (3)
H1B—N1—H1C109.5C6—C5—H5120.5
S1—N2—H21115.1C4—C5—H5120.5
S1—N2—H22117.9C5—C6—C1119.4 (3)
H21—N2—H22115.7C5—C6—H6120.3
C2—C1—C6121.5 (3)C1—C6—H6120.3
C2—C1—N1118.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.303.122 (3)153
N1—H1B···Cl1i0.892.323.097 (3)146
N1—H1C···Cl1ii0.892.333.189 (3)162
N2—H21···O1iii0.842.222.963 (5)147
N2—H22···O2iv0.852.173.019 (5)178

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) x−1/2, −y+3/2, −z+2; (iii) x, y−1/2, −z+3/2; (iv) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2568).

References

  • Blaser, H. U. (1992). Chem. Rev.92, 935–952.
  • Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. [PubMed]
  • Gelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem.125, 1951–1957
  • Harms, K. & Wocadlo, S. (1995). XCAD4 Université de Marburg, Allemagne.
  • Michalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res.33, 135–149. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Otsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maedda, K. (1990). J. Am. Chem. Soc.112, 838–845.
  • Pasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl.26, 615–624.
  • Reedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801–806.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036–o1038.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography