PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m651–m652.
Published online 2010 May 15. doi:  10.1107/S1600536810017174
PMCID: PMC2979365

Di-μ1,1-azido-bis­[(2-{1-[2-(isopropyl­amino)ethyl­imino]eth­yl}phenolato)copper(II)]

Abstract

In the centrosymmetric binuclear title complex, [Cu2(C13H19N2O)2(N3)2], the CuII atom adopts an elongated CuON4 square-based pyramidal coordination geometry, arising from the N,N′,O-tridentate ligand and two bridging end-on azide anions. The O atom is in the basal plane, one of the azide N atoms is in the apical site and the Cu(...)Cu separation is 3.2365 (3) Å. A pair of intra­molecular N—H(...)O hydrogen bonds helps to establish the mol­ecular conformation.

Related literature

For background to polynuclear complexes, see: Massoud et al. (2007 [triangle]); Lisnard et al. (2007 [triangle]); Sarkar et al. (2004 [triangle]); Escuer & Aromí (2006 [triangle]); Goher et al. (2001 [triangle]); Colacio et al. (2005 [triangle]); Sailaja et al. (2003 [triangle]); Cheng et al. (2006 [triangle]); Meyer et al. (2005 [triangle]); Sharma (1990 [triangle]); Ko et al. (2006 [triangle]); Escuer et al. (1998 [triangle]). For azido-bridged copper(II) complexes, see: Triki et al. (2005 [triangle]); Gao et al. (2005 [triangle]); Zhang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m651-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C13H19N2O)2(N3)2]
  • M r = 649.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m651-efi1.jpg
  • a = 9.6558 (3) Å
  • b = 15.3021 (5) Å
  • c = 10.6549 (3) Å
  • β = 115.174 (1)°
  • V = 1424.78 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.54 mm−1
  • T = 298 K
  • 0.30 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.656, T max = 0.682
  • 8486 measured reflections
  • 3205 independent reflections
  • 2700 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.068
  • S = 1.05
  • 3205 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017174/hb5441sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017174/hb5441Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges a research grant from Xiangnan University.

supplementary crystallographic information

Comment

Polynuclear complexes containing bridging groups are of great interest because of their versatile molecular structures and applications (Massoud et al., 2007; Lisnard et al., 2007; Sarkar et al., 2004). In the last few years chemists have dedicated their efforts to the study of molecular-based magnetic materials. One strategy for the design of molecular based magnets involves assembling of paramagnetic metal ions in one-, two- and three-dimensional networks using suitable bridging ligands (Escuer & Aromí, 2006; Goher et al., 2001; Colacio et al., 2005; Sailaja et al., 2003). The azide ligands have been widely used because of their diverse binding modes that yield different types of molecules such as dimmers, tetramers, one-, two-, or three-dimensional arrays (Cheng et al., 2006; Meyer et al., 2005; Sharma, 1990; Ko et al., 2006; Escuer et al., 1998). In the present work, the title new end-on azido-bridged dinuclear copper(II) complex, (I), containing the deprotonated form of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol), HL, has been prepared and structural characterized.

The structure of the complex is shown in Fig. 1. There are two unique units [CuL] linked by double end-on azido bridging groups with an inversion center at the midpoint of the two Cu atoms. Each Cu atom in the complex is in a square pyramidal environment consisting of the NNO donor set from one Schiff base ligand and two N atoms from two bridging azido groups. The Cu···Cu distance is 3.236 (1) Å. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other similar copper(II) complexes with azido bridges (Triki et al., 2005; Gao et al., 2005; Zhang et al., 2001). There are two N—H···O hydrogen bonds (Table 1) between the two symmetry-related two CuL units (Fig. 2).

Experimental

A mixture of NaN3 (0.065 g, 1 mmol) and Cu(NO3)2.3H2O (0.241 g, 1 mmol) in 50 ml methanol was stirred for half an hour with heating, then HL (0.220 g, 1 mmol) was added to the solution and the reaction continued to stirred for 1 h. After filtration, the blue filtrate was allowed to stand at room temperature for a week to deposit blue blocks of (I) in 54% yield.

Refinement

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å, N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids. The dashed lines indicate the N—H···O hydrogen bonds. Unlabelled atoms are generated by (1–x, –y, 1–z).
Fig. 2.
The packing diagram for (I).

Crystal data

[Cu2(C13H19N2O)2(N3)2]F(000) = 676
Mr = 649.74Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4033 reflections
a = 9.6558 (3) Åθ = 2.5–28.4°
b = 15.3021 (5) ŵ = 1.54 mm1
c = 10.6549 (3) ÅT = 298 K
β = 115.174 (1)°Block, blue
V = 1424.78 (8) Å30.30 × 0.28 × 0.27 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer3205 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −12→12
Tmin = 0.656, Tmax = 0.682k = −19→15
8486 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2887P] where P = (Fo2 + 2Fc2)/3
3205 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.59044 (2)0.085868 (13)0.58341 (2)0.02936 (8)
N10.79784 (16)0.13417 (9)0.67367 (16)0.0338 (3)
N20.58778 (17)0.13250 (10)0.40334 (15)0.0342 (3)
H2A0.54300.09050.33800.041*
N30.36638 (17)0.05814 (10)0.48628 (16)0.0365 (3)
N40.27481 (17)0.08176 (10)0.52619 (17)0.0381 (4)
N50.1825 (3)0.10262 (14)0.5608 (3)0.0738 (7)
O10.59002 (15)0.04762 (10)0.75079 (13)0.0455 (3)
C10.7028 (2)0.05405 (13)0.87468 (19)0.0389 (4)
C20.6797 (3)0.01235 (15)0.9831 (2)0.0524 (5)
H20.5897−0.01880.96150.063*
C30.7854 (3)0.01630 (16)1.1183 (2)0.0628 (7)
H30.7662−0.01101.18730.075*
C40.9211 (4)0.06119 (17)1.1520 (2)0.0704 (8)
H40.99340.06431.24370.084*
C50.9482 (3)0.10079 (15)1.0498 (2)0.0559 (6)
H51.04080.12971.07410.067*
C60.8418 (2)0.09990 (12)0.9086 (2)0.0386 (4)
C70.8821 (2)0.14202 (12)0.8055 (2)0.0373 (4)
C81.0266 (2)0.19634 (16)0.8554 (3)0.0606 (6)
H8A1.11150.15960.86630.091*
H8B1.04490.22270.94290.091*
H8C1.01500.24120.78870.091*
C90.8460 (2)0.17343 (14)0.5724 (2)0.0443 (5)
H9A0.95380.16200.59960.053*
H9B0.83100.23620.56910.053*
C100.7519 (2)0.13412 (13)0.4315 (2)0.0433 (5)
H10A0.76520.16830.36080.052*
H10B0.78680.07510.42830.052*
C110.5038 (2)0.21591 (13)0.3447 (2)0.0434 (5)
H110.56000.24790.30140.052*
C120.4930 (3)0.27349 (15)0.4550 (3)0.0587 (6)
H12A0.43410.24440.49590.088*
H12B0.44420.32750.41410.088*
H12C0.59390.28520.52530.088*
C130.3461 (3)0.19476 (17)0.2336 (2)0.0636 (6)
H13A0.35550.15800.16460.095*
H13B0.29480.24790.19110.095*
H13C0.28800.16490.27450.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02708 (12)0.03103 (13)0.03107 (13)−0.00587 (8)0.01341 (9)−0.00101 (9)
N10.0281 (7)0.0312 (8)0.0426 (9)−0.0043 (6)0.0154 (7)−0.0021 (7)
N20.0403 (8)0.0307 (8)0.0337 (8)−0.0058 (6)0.0177 (7)−0.0011 (6)
N30.0299 (8)0.0390 (8)0.0417 (9)−0.0062 (6)0.0163 (7)−0.0048 (7)
N40.0319 (8)0.0322 (8)0.0478 (9)−0.0015 (6)0.0147 (7)0.0014 (7)
N50.0586 (13)0.0661 (14)0.117 (2)0.0054 (10)0.0569 (14)−0.0125 (13)
O10.0376 (7)0.0671 (9)0.0331 (7)−0.0116 (7)0.0163 (6)0.0023 (7)
C10.0445 (10)0.0405 (10)0.0342 (10)0.0072 (8)0.0194 (8)−0.0030 (8)
C20.0688 (14)0.0548 (13)0.0416 (12)0.0089 (11)0.0312 (11)0.0021 (10)
C30.098 (2)0.0558 (14)0.0383 (12)0.0221 (14)0.0321 (13)0.0041 (11)
C40.096 (2)0.0579 (15)0.0327 (12)0.0248 (15)0.0037 (12)−0.0022 (11)
C50.0571 (13)0.0470 (13)0.0443 (12)0.0090 (10)0.0031 (10)−0.0091 (10)
C60.0387 (10)0.0325 (10)0.0367 (10)0.0073 (8)0.0085 (8)−0.0078 (8)
C70.0292 (9)0.0293 (9)0.0470 (11)0.0014 (7)0.0100 (8)−0.0078 (8)
C80.0366 (11)0.0606 (15)0.0692 (15)−0.0137 (10)0.0077 (10)−0.0124 (13)
C90.0340 (10)0.0451 (11)0.0589 (13)−0.0066 (8)0.0248 (9)0.0039 (10)
C100.0486 (11)0.0415 (11)0.0541 (12)−0.0014 (9)0.0356 (10)0.0051 (9)
C110.0492 (11)0.0359 (10)0.0447 (11)−0.0013 (8)0.0195 (9)0.0110 (9)
C120.0685 (15)0.0389 (12)0.0668 (15)0.0079 (11)0.0272 (13)−0.0025 (11)
C130.0588 (14)0.0623 (16)0.0517 (14)0.0021 (12)0.0062 (11)0.0125 (12)

Geometric parameters (Å, °)

Cu1—O11.8786 (13)C5—C61.416 (3)
Cu1—N11.9604 (14)C5—H50.9300
Cu1—N32.0067 (15)C6—C71.462 (3)
Cu1—N22.0369 (14)C7—C81.513 (3)
Cu1—N3i2.4175 (16)C8—H8A0.9600
N1—C71.295 (2)C8—H8B0.9600
N1—C91.473 (2)C8—H8C0.9600
N2—C101.482 (2)C9—C101.510 (3)
N2—C111.499 (2)C9—H9A0.9700
N2—H2A0.9100C9—H9B0.9700
N3—N41.189 (2)C10—H10A0.9700
N3—Cu1i2.4175 (16)C10—H10B0.9700
N4—N51.145 (2)C11—C121.507 (3)
O1—C11.310 (2)C11—C131.514 (3)
C1—C21.417 (3)C11—H110.9800
C1—C61.418 (3)C12—H12A0.9600
C2—C31.368 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.384 (4)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.364 (4)C13—H13C0.9600
C4—H40.9300
O1—Cu1—N193.78 (6)C1—C6—C7123.53 (17)
O1—Cu1—N389.23 (6)N1—C7—C6121.92 (16)
N1—Cu1—N3170.06 (6)N1—C7—C8119.49 (18)
O1—Cu1—N2177.52 (6)C6—C7—C8118.59 (18)
N1—Cu1—N286.04 (6)C7—C8—H8A109.5
N3—Cu1—N290.54 (6)C7—C8—H8B109.5
O1—Cu1—N3i94.47 (6)H8A—C8—H8B109.5
N1—Cu1—N3i102.75 (5)C7—C8—H8C109.5
N3—Cu1—N3i86.43 (6)H8A—C8—H8C109.5
N2—Cu1—N3i87.98 (6)H8B—C8—H8C109.5
C7—N1—C9120.54 (15)N1—C9—C10108.74 (15)
C7—N1—Cu1127.34 (13)N1—C9—H9A109.9
C9—N1—Cu1111.69 (12)C10—C9—H9A109.9
C10—N2—C11114.37 (14)N1—C9—H9B109.9
C10—N2—Cu1103.35 (11)C10—C9—H9B109.9
C11—N2—Cu1118.59 (11)H9A—C9—H9B108.3
C10—N2—H2A106.6N2—C10—C9110.37 (15)
C11—N2—H2A106.6N2—C10—H10A109.6
Cu1—N2—H2A106.6C9—C10—H10A109.6
N4—N3—Cu1123.64 (13)N2—C10—H10B109.6
N4—N3—Cu1i129.69 (12)C9—C10—H10B109.6
Cu1—N3—Cu1i93.57 (6)H10A—C10—H10B108.1
N5—N4—N3177.4 (2)N2—C11—C12112.19 (16)
C1—O1—Cu1126.66 (12)N2—C11—C13109.26 (17)
O1—C1—C2115.87 (18)C12—C11—C13110.81 (19)
O1—C1—C6125.78 (17)N2—C11—H11108.2
C2—C1—C6118.34 (19)C12—C11—H11108.2
C3—C2—C1122.2 (2)C13—C11—H11108.2
C3—C2—H2118.9C11—C12—H12A109.5
C1—C2—H2118.9C11—C12—H12B109.5
C2—C3—C4119.6 (2)H12A—C12—H12B109.5
C2—C3—H3120.2C11—C12—H12C109.5
C4—C3—H3120.2H12A—C12—H12C109.5
C5—C4—C3119.7 (2)H12B—C12—H12C109.5
C5—C4—H4120.2C11—C13—H13A109.5
C3—C4—H4120.2C11—C13—H13B109.5
C4—C5—C6123.0 (2)H13A—C13—H13B109.5
C4—C5—H5118.5C11—C13—H13C109.5
C6—C5—H5118.5H13A—C13—H13C109.5
C5—C6—C1117.1 (2)H13B—C13—H13C109.5
C5—C6—C7119.31 (19)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.453.293 (2)155

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5441).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, K., Zhu, H.-L. & Gao, Y.-H. (2006). Synth. React. Inorg. Met. Org. Nano-Met. Chem.36, 477–480.
  • Colacio, E., Costes, J.-P., Domínguez-Vera, J. M., Maimoun, I. B. & Suárez-Varela, J. (2005). Chem. Commun. pp. 534–536. [PubMed]
  • Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736.
  • Escuer, A., Vicente, R., Goher, M. A. S. & Mautner, F. A. (1998). Inorg. Chem.37, 782–787.
  • Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2005). Cryst. Growth Des.5, 1119–1124.
  • Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971–2977.
  • Ko, H. H., Lim, J. H., Kim, H. C. & Hong, C. S. (2006). Inorg. Chem.45, 8847–8849. [PubMed]
  • Lisnard, L., Mialane, P., Dolbecq, A., Marrot, J., Clemente-Juan, J. M., Coronado, E., Keita, B., de Oliveira, P., Nadjo, L. & Sécheresse, F. (2007). Chem. Eur. J.13, 3525–3536. [PubMed]
  • Massoud, S. S., Mautner, F. A., Vicente, R., Gallo, A. A. & Ducasse, E. (2007). Eur. J. Inorg. Chem. pp. 1091–1102.
  • Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J.11, 1518–1526. [PubMed]
  • Sailaja, S., Reddy, K. R., Rajasekharan, M. V., Hureau, C., Riviŕe, E., Cano, J. & Girerd, J.-J. (2003). Inorg. Chem.42, 180–186. [PubMed]
  • Sarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633–4639.
  • Sharma, S. B. (1990). Synth. React. Inorg. Met. Org. Nano-Met. Chem.20, 223–241.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Triki, S., Gómez-García, C. J., Ruiz, E. & Sala-Pala, J. (2005). Inorg. Chem.44, 5501–5508. [PubMed]
  • Zhang, L., Tang, L.-F., Wang, Z.-H., Du, M., Julve, M., Lloret, F. & Wang, J.-T. (2001). Inorg. Chem.40, 3619–3622. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography