PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1304.
Published online 2010 May 8. doi:  10.1107/S1600536810015527
PMCID: PMC2979364

(4-Chloro­phen­yl)(3,8-dibromo-2-hydr­oxy-7-meth­oxy-1-naphth­yl)methanone

Abstract

In the title compound, C18H11Br2ClO3, an intra­molecular O—H(...)O=C hydrogen bond occurs, forming a six-membered ring. The naphthalene ring system and the benzene ring make a dihedral angle of 57.36 (9)°. The central carbonyl C—(C=O)—C group is twisted away from the naphthalene ring system and the benzene ring by 18.61 (15) and 26.25 (16)°, respectively. In the crystal structure, two inter­molecular Br(...)Cl close contacts [3.4927 (7) and 3.4325 (7) Å] are observed.

Related literature

For related structures, see: Mitsui et al. (2009 [triangle]); Mitsui, Nakaema, Nagasawa et al. (2010 [triangle]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008 [triangle]); Mitsui, Nakaema, Noguchi & Yonezawa (2008 [triangle]); Mitsui, Nagasawa, Watanabe et al. (2010 [triangle]). For information on halogen(...)halogen contacts, see: Moorthy et al. (2002 [triangle]); Pedireddi et al. (1994 [triangle]); Saruma & Desiraju (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1304-scheme1.jpg

Experimental

Crystal data

  • C18H11Br2ClO3
  • M r = 470.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1304-efi1.jpg
  • a = 12.1513 (2) Å
  • b = 10.06343 (18) Å
  • c = 13.8936 (3) Å
  • β = 103.675 (1)°
  • V = 1650.79 (5) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 7.85 mm−1
  • T = 193 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.189, T max = 0.308
  • 29373 measured reflections
  • 3022 independent reflections
  • 2940 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.076
  • S = 1.11
  • 3022 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015527/is2542sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015527/is2542Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui, Nakaema, Nagasawa et al., 2010) and (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui, Nagasawa, Watanabe et al., 2010). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 2,5-dibromo-4-(4-chlorobenzoyl)-3-hydroxy-6-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the intramolecular O—H···O═C hydrogen bond, which forms a six-membered ring including the C═O group and an edge of the naphthalene ring, is present (Table 1). The conformation of these groups resembles to that of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). Intriguingly, the central C═O group is twisted away from the naphthalene ring and the benzene ring, and the bromo group at 8-position of naphthalene is out of the least-squares plane of the naphthalene ring. The angles of the C═O bond vector against the least-squares plane of the naphthalene ring and the benzene ring are 18.61 (15) and 26.25 (16)°, respectively. The angle of the C9—Br1 bond vector against the least-squares plane of the naphthalene ring is 14.93 (7)°. This is presumably caused by release of the large steric repulsion brought about by the benzene ring and the bromo group on the naphthalene ring of (I).

In the crystal structure, the contact distances Br1···Cl1 and Br2···Cl1 are 3.4927 (7) and 3.4325 (7) Å, respectively (Fig. 2). These contacts are shorter than the sum of their van der Waals radii (3.60 Å), and the five atoms are arranged nearly linear [C9—Br1···Cl1 = 154.14 (6)°, C3—Br2···Cl1 = 165.35 (7)°], suggesting that there is a possibility for halogen interaction (Saruma & Desiraju, 1986; Pedireddi et al., 1994; Moorthy et al., 2002).

Experimental

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br2 (483 mg, 3.03 mmol) drop-wise. The reaction mixture was heated at reflux for 2 h, then poured into aqueous 2 M Na2S2O3 (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with 2 M Na2S2O3 (3 × 30 ml) and brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by column chromatography (silica gel, CHCl3) to give the title compound (yield 306 mg, 65%). Single crystals suitable for X-ray diffraction analysis were obtained from CHCl3 as yellow blocks (m.p. 455.0–455.5 K).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 8.10 (s, 1H), 8.04 (s, 1H), 7.75 (d, 1H), 7.58 (d, 2H), 7.31 (d, 2H), 7.17 (d, 1H), 3.95 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 195.6, 156.3, 152.6, 139.3, 138.3, 134.9, 132.4, 130.3, 129.1, 128.8, 125.8, 118.1, 112.2, 110.5, 105.9, 56.9; IR (KBr): 1670, 1607, 1587, 1495, 1276, 1215, 1096, 782; HRMS (m/z): [M + H]+ calcd for C18H12Br2ClO3, 468.8842 found, 468.8839. Anal. Calcd for C18H11Br2ClO3: C 45.95, H 2.36. Found: C 46.23, H 2.39.

Refinement

All H atoms were located in a difference Fourier map and were subsequently refined as riding atoms, with O—H = 0.833 Å, C—H = 0.95 Å (aromatic) and 0.98 Å (methyl) Å, and with Uiso(H) = 1.2Ueq(O, C).

Figures

Fig. 1.
The molecular structure of compound (I), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
Partial crystal packing diagram of compound (I), viewed down the b axis. Halogen-halogen interactions are shown as dashed lines.

Crystal data

C18H11Br2ClO3F(000) = 920
Mr = 470.54Dx = 1.893 Mg m3
Monoclinic, P21/cMelting point = 455.0–455.5 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 12.1513 (2) ÅCell parameters from 28732 reflections
b = 10.06343 (18) Åθ = 3.3–68.2°
c = 13.8936 (3) ŵ = 7.85 mm1
β = 103.675 (1)°T = 193 K
V = 1650.79 (5) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3022 independent reflections
Radiation source: rotating anode2940 reflections with I > 2σ(I)
graphiteRint = 0.068
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 3.7°
ω scansh = −14→14
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −12→12
Tmin = 0.189, Tmax = 0.308l = −16→16
29373 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.076w = 1/[σ2(Fo2) + (0.0457P)2 + 0.9314P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3022 reflectionsΔρmax = 0.60 e Å3
219 parametersΔρmin = −0.64 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0162 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.348845 (18)0.93221 (2)0.140206 (18)0.02724 (13)
Br2−0.250748 (19)0.77531 (3)0.077383 (18)0.03487 (13)
Cl10.49341 (5)0.85290 (6)0.59621 (4)0.03239 (17)
O10.18770 (16)0.61119 (18)0.17108 (14)0.0377 (4)
O2−0.02937 (15)0.63660 (18)0.11024 (13)0.0357 (4)
H2O0.03290.59820.11980.043*
O30.33774 (13)1.21262 (15)0.17994 (12)0.0256 (3)
C10.09899 (18)0.8215 (2)0.14949 (15)0.0222 (4)
C2−0.0097 (2)0.7676 (2)0.11910 (17)0.0264 (5)
C3−0.10526 (18)0.8529 (3)0.10204 (16)0.0268 (5)
C4−0.09270 (18)0.9868 (3)0.10944 (16)0.0268 (5)
H4−0.15791.04170.10040.032*
C50.01632 (18)1.0458 (2)0.13047 (16)0.0232 (5)
C60.02945 (19)1.1856 (2)0.13389 (17)0.0266 (5)
H6−0.03611.24020.12170.032*
C70.1339 (2)1.2440 (2)0.15434 (17)0.0259 (5)
H70.14081.33770.16170.031*
C80.23139 (18)1.1645 (2)0.16441 (15)0.0216 (4)
C90.21941 (17)1.0276 (2)0.15487 (15)0.0198 (4)
C100.11426 (18)0.9635 (2)0.14633 (15)0.0203 (4)
C110.18698 (19)0.7270 (2)0.20076 (17)0.0249 (5)
C120.26347 (18)0.7639 (2)0.29783 (17)0.0229 (5)
C130.23528 (18)0.8631 (2)0.35778 (16)0.0238 (5)
H130.16780.91310.33510.029*
C140.30470 (19)0.8895 (2)0.45010 (17)0.0261 (5)
H140.28460.95590.49140.031*
C150.40403 (18)0.8174 (2)0.48129 (16)0.0242 (5)
C160.43420 (19)0.7176 (2)0.42328 (18)0.0278 (5)
H160.50240.66890.44580.033*
C170.36288 (19)0.6908 (2)0.33217 (18)0.0268 (5)
H170.38160.62170.29220.032*
C180.3525 (2)1.3542 (2)0.18675 (19)0.0318 (5)
H18A0.43261.37600.19360.038*
H18B0.32791.38730.24460.038*
H18C0.30711.39600.12670.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01855 (17)0.02555 (19)0.04042 (19)0.00433 (8)0.01259 (11)0.00170 (9)
Br20.01849 (17)0.0547 (2)0.02984 (18)−0.01184 (10)0.00254 (11)0.00019 (10)
Cl10.0229 (3)0.0404 (4)0.0307 (3)−0.0019 (2)0.0000 (2)−0.0010 (2)
O10.0354 (10)0.0239 (9)0.0482 (11)0.0019 (7)−0.0014 (8)−0.0083 (8)
O20.0278 (9)0.0311 (10)0.0447 (10)−0.0081 (7)0.0016 (7)−0.0024 (8)
O30.0196 (8)0.0220 (8)0.0346 (9)−0.0022 (6)0.0050 (6)−0.0014 (6)
C10.0185 (10)0.0247 (12)0.0229 (10)−0.0011 (9)0.0038 (8)−0.0019 (8)
C20.0249 (12)0.0304 (13)0.0228 (11)−0.0053 (9)0.0034 (9)−0.0009 (9)
C30.0150 (10)0.0423 (14)0.0219 (10)−0.0054 (9)0.0021 (8)0.0000 (9)
C40.0175 (10)0.0387 (14)0.0246 (11)0.0029 (9)0.0056 (8)0.0001 (9)
C50.0175 (10)0.0325 (12)0.0198 (10)0.0035 (9)0.0050 (8)0.0004 (9)
C60.0202 (11)0.0305 (12)0.0291 (11)0.0085 (9)0.0059 (9)0.0008 (9)
C70.0259 (12)0.0236 (12)0.0277 (11)0.0041 (9)0.0054 (9)−0.0021 (9)
C80.0194 (10)0.0262 (12)0.0193 (9)−0.0001 (8)0.0046 (8)−0.0011 (8)
C90.0156 (10)0.0228 (11)0.0213 (10)0.0045 (8)0.0049 (8)0.0003 (8)
C100.0180 (10)0.0242 (11)0.0181 (9)0.0016 (8)0.0033 (8)−0.0017 (8)
C110.0216 (11)0.0221 (12)0.0309 (12)−0.0018 (9)0.0063 (9)−0.0011 (9)
C120.0195 (10)0.0206 (11)0.0292 (11)−0.0014 (8)0.0072 (9)0.0036 (8)
C130.0176 (10)0.0246 (12)0.0301 (11)0.0014 (8)0.0075 (9)0.0034 (9)
C140.0224 (11)0.0285 (12)0.0282 (11)0.0011 (9)0.0077 (9)0.0002 (9)
C150.0188 (10)0.0283 (12)0.0243 (10)−0.0046 (9)0.0031 (8)0.0024 (9)
C160.0191 (11)0.0291 (13)0.0352 (12)0.0035 (9)0.0063 (9)0.0051 (9)
C170.0235 (11)0.0243 (12)0.0333 (12)0.0019 (9)0.0079 (9)−0.0004 (9)
C180.0331 (13)0.0233 (12)0.0387 (13)−0.0066 (10)0.0075 (10)−0.0012 (10)

Geometric parameters (Å, °)

Br1—C91.894 (2)C7—C81.408 (3)
Br2—C31.888 (2)C7—H70.9500
Cl1—C151.743 (2)C8—C91.388 (3)
O1—C111.237 (3)C9—C101.411 (3)
O2—C21.340 (3)C11—C121.492 (3)
O2—H2O0.8326C12—C131.394 (3)
O3—C81.349 (3)C12—C171.398 (3)
O3—C181.437 (3)C13—C141.384 (3)
C1—C21.398 (3)C13—H130.9500
C1—C101.443 (3)C14—C151.387 (3)
C1—C111.481 (3)C14—H140.9500
C2—C31.418 (3)C15—C161.390 (3)
C3—C41.357 (4)C16—C171.381 (3)
C4—C51.418 (3)C16—H160.9500
C4—H40.9500C17—H170.9500
C5—C61.415 (3)C18—H18A0.9800
C5—C101.424 (3)C18—H18B0.9800
C6—C71.366 (3)C18—H18C0.9800
C6—H60.9500
C2—O2—H2O107.9C9—C10—C1124.8 (2)
C8—O3—C18117.81 (18)C5—C10—C1118.17 (19)
C2—C1—C10119.6 (2)O1—C11—C1120.4 (2)
C2—C1—C11114.8 (2)O1—C11—C12118.9 (2)
C10—C1—C11124.52 (19)C1—C11—C12119.97 (19)
O2—C2—C1123.0 (2)C13—C12—C17119.2 (2)
O2—C2—C3117.3 (2)C13—C12—C11122.0 (2)
C1—C2—C3119.6 (2)C17—C12—C11118.7 (2)
C4—C3—C2121.0 (2)C14—C13—C12120.6 (2)
C4—C3—Br2120.53 (18)C14—C13—H13119.7
C2—C3—Br2118.32 (18)C12—C13—H13119.7
C3—C4—C5121.0 (2)C13—C14—C15118.9 (2)
C3—C4—H4119.5C13—C14—H14120.5
C5—C4—H4119.5C15—C14—H14120.5
C6—C5—C4121.0 (2)C14—C15—C16121.7 (2)
C6—C5—C10119.3 (2)C14—C15—Cl1119.13 (18)
C4—C5—C10119.6 (2)C16—C15—Cl1119.13 (18)
C7—C6—C5121.8 (2)C17—C16—C15118.6 (2)
C7—C6—H6119.1C17—C16—H16120.7
C5—C6—H6119.1C15—C16—H16120.7
C6—C7—C8119.6 (2)C16—C17—C12120.9 (2)
C6—C7—H7120.2C16—C17—H17119.5
C8—C7—H7120.2C12—C17—H17119.5
O3—C8—C9116.51 (19)O3—C18—H18A109.5
O3—C8—C7124.3 (2)O3—C18—H18B109.5
C9—C8—C7119.2 (2)H18A—C18—H18B109.5
C8—C9—C10122.30 (19)O3—C18—H18C109.5
C8—C9—Br1116.24 (16)H18A—C18—H18C109.5
C10—C9—Br1121.15 (17)H18B—C18—H18C109.5
C9—C10—C5117.0 (2)
C10—C1—C2—O2172.9 (2)C6—C5—C10—C9−6.2 (3)
C11—C1—C2—O2−18.3 (3)C4—C5—C10—C9172.45 (18)
C10—C1—C2—C3−10.9 (3)C6—C5—C10—C1175.64 (19)
C11—C1—C2—C3157.8 (2)C4—C5—C10—C1−5.7 (3)
O2—C2—C3—C4−180.0 (2)C2—C1—C10—C9−166.1 (2)
C1—C2—C3—C43.7 (3)C11—C1—C10—C926.3 (3)
O2—C2—C3—Br24.2 (3)C2—C1—C10—C511.9 (3)
C1—C2—C3—Br2−172.17 (16)C11—C1—C10—C5−155.7 (2)
C2—C3—C4—C52.6 (3)C2—C1—C11—O140.3 (3)
Br2—C3—C4—C5178.36 (16)C10—C1—C11—O1−151.6 (2)
C3—C4—C5—C6177.2 (2)C2—C1—C11—C12−129.7 (2)
C3—C4—C5—C10−1.5 (3)C10—C1—C11—C1238.5 (3)
C4—C5—C6—C7179.8 (2)O1—C11—C12—C13−149.6 (2)
C10—C5—C6—C7−1.6 (3)C1—C11—C12—C1320.5 (3)
C5—C6—C7—C85.3 (3)O1—C11—C12—C1726.3 (3)
C18—O3—C8—C9177.92 (19)C1—C11—C12—C17−163.6 (2)
C18—O3—C8—C70.1 (3)C17—C12—C13—C140.1 (3)
C6—C7—C8—O3176.8 (2)C11—C12—C13—C14176.0 (2)
C6—C7—C8—C9−1.0 (3)C12—C13—C14—C151.3 (3)
O3—C8—C9—C10174.84 (18)C13—C14—C15—C16−1.5 (3)
C7—C8—C9—C10−7.2 (3)C13—C14—C15—Cl1178.49 (17)
O3—C8—C9—Br1−11.4 (2)C14—C15—C16—C170.2 (3)
C7—C8—C9—Br1166.54 (16)Cl1—C15—C16—C17−179.73 (18)
C8—C9—C10—C510.7 (3)C15—C16—C17—C121.2 (3)
Br1—C9—C10—C5−162.76 (15)C13—C12—C17—C16−1.4 (3)
C8—C9—C10—C1−171.3 (2)C11—C12—C17—C16−177.4 (2)
Br1—C9—C10—C115.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.831.852.585 (3)146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2542).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o873. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [PMC free article] [PubMed]
  • Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [PMC free article] [PubMed]
  • Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. [PMC free article] [PubMed]
  • Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc.124, 6530–6531. [PubMed]
  • Pedireddi, V. R., Shekhar Reddy, D., Satish Goud, B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2359.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Saruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res.19, 222–228.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography