PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1381.
Published online 2010 May 19. doi:  10.1107/S1600536810017368
PMCID: PMC2979360

4-Chloro-N-[3-methyl-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)but­yl]benzamide

Abstract

In the title compound, C14H16ClN3O2S, the dihedral angle between the 4-chloro­phenyl and 1,3,4-oxadiazole rings is 67.1 (1)° and the orientation of the amide N—H and C=O bonds is anti. In the crystal, mol­ecules are linked by N—H(...)O and N—H(...)S hydrogen bonds.

Related literature

For the biological properties of thia­diazo­les, see: Tu et al. (2008 [triangle]). For details of the synthesis, see: Ginzel et al. (1989 [triangle]); Boland et al. (2006 [triangle]); Havaldar & Patil (2009 [triangle]); Shriner & Furrow (1955 [triangle]). For related structures, see: Du et al. (2004 [triangle]); Ziyaev et al. (1992 [triangle]); Zareef et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1381-scheme1.jpg

Experimental

Crystal data

  • C14H16ClN3O2S
  • M r = 325.81
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1381-efi1.jpg
  • a = 6.0171 (6) Å
  • b = 15.3120 (15) Å
  • c = 18.1493 (17) Å
  • V = 1672.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 298 K
  • 0.42 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.864, T max = 0.938
  • 7892 measured reflections
  • 2951 independent reflections
  • 1447 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.108
  • S = 1.10
  • 2951 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1219 Friedel pairs
  • Flack parameter: −0.09 (14)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017368/hb5439sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017368/hb5439Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Key Technologies R & D Program of JiangXi (grant No. 20061B0100400), the Key Science & Technology Program of JiangXi (grant No. 2009BSA14100) and the Scientific Research Fund of NanChang University.

supplementary crystallographic information

Comment

The present oxadiazole derivate is in continuation to our previous work of the thiadiazole scaffold compounds and their biological activity (Tu et al., 2008). The title compound (Figure 1) was synthesized according to literature procedures (Ginzel et al., 1989; Boland et al., 2006; Havaldar & Patil 2009). Here, we report the structure of the title compound.

The oxadiazole ring is essentially planar and is inclined at 67.1 (1)° with respect to the p-cholobenzene ring. The N2=C2 and S1=C1 double bonds agree with the corresponding distances in three structures containing similar systems (Du et al., 2004; Ziyaev et al., 1992; Zareef et al., 2006). The conformations of the N—H and C=O bonds are anti with respect to each other. The structure is stabilized by a network of intermolecular hydrogen bonds of the type N—H···S (Table 1, Figure 2).

Experimental

To a stirred solution of DL-leucine methyl ester hydrochloride (0.03 mol) in CH2Cl2 (20 ml) was added triethylamine (0.06 mol) at 273 K. After 0.5 h, a solution of p-chlorobenzoic acid chloride (0.03 mol) in CH2Cl2 (10 ml) was added. The mixture was stirred for 2 h at 273 K, then allowed to warm to r.t. for 24 h. Washed with 10% HCl, 1 N NaOH and water. The organic layer was evaporated in vacuo and the residue was recrystallized from methanol to give corresponding amides as a white solid.

A mixture of the amides (0.02 mol) and 80% hydrazine monohydrate (0.04 mol) in absolute methanol (20 ml) was heated under reflux over night. After cooling, a white solid was separated and recrystallized from methanol to give corresponding hydrazide.

A mixture of the hydrazide (0.01 mol), KOH (0.01 mol), CS2 (0.05 mol), and ethanol (70 ml) was heated under reflux with stirring for 12 h. Ethanol was distilled off under reduced pressure and the residue was dissolved in water and then acidified with 10% HCl. The resulting precipitate was filtered, washed with water, and recrystallized from ethanol. Colourless blocks of (I) precipitated after several days.

Refinement

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uiso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 Ueq(C) for CH3).

Figures

Fig. 1.
Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I), viewed along the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C14H16ClN3O2SF(000) = 680
Mr = 325.81Dx = 1.294 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2117 reflections
a = 6.0171 (6) Åθ = 2.6–21.7°
b = 15.3120 (15) ŵ = 0.36 mm1
c = 18.1493 (17) ÅT = 298 K
V = 1672.2 (3) Å3Block, colourless
Z = 40.42 × 0.22 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer2951 independent reflections
Radiation source: fine-focus sealed tube1447 reflections with I > 2σ(I)
graphiteRint = 0.056
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.864, Tmax = 0.938k = −18→11
7892 measured reflectionsl = −21→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050w = 1/[σ2(Fo2) + (0.0147P)2 + 1.0529P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.31 e Å3
2951 reflectionsΔρmin = −0.32 e Å3
193 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1219 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.09 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.2875 (3)0.07537 (10)−0.04447 (8)0.1082 (7)
N10.4961 (8)0.5638 (3)0.2486 (2)0.0653 (12)
H10.45530.61750.25150.078*
N20.6705 (8)0.5299 (2)0.2891 (2)0.0679 (12)
N30.9177 (6)0.3351 (2)0.22952 (19)0.0530 (10)
H31.03230.35770.20860.064*
O10.5141 (6)0.4303 (2)0.21792 (16)0.0650 (10)
O20.6632 (6)0.22820 (19)0.23058 (17)0.0672 (10)
S10.1860 (3)0.51382 (10)0.14928 (8)0.0902 (5)
C10.3976 (8)0.5066 (3)0.2049 (2)0.0601 (13)
C20.6745 (10)0.4498 (3)0.2683 (2)0.0555 (13)
C30.8216 (9)0.3780 (3)0.2935 (2)0.0572 (13)
H3A0.72950.33520.31950.069*
C40.9999 (9)0.4102 (3)0.3469 (2)0.0628 (14)
H4A1.08270.45670.32330.075*
H4B0.92710.43480.38980.075*
C51.1631 (10)0.3406 (3)0.3725 (3)0.0793 (17)
H51.24520.32060.32900.095*
C61.3329 (10)0.3803 (4)0.4260 (3)0.097 (2)
H6A1.26040.39480.47150.145*
H6B1.39550.43210.40460.145*
H6C1.44900.33870.43530.145*
C71.0511 (12)0.2623 (4)0.4053 (3)0.129 (3)
H7A0.96450.27990.44710.193*
H7B1.16150.22080.42050.193*
H7C0.95570.23600.36920.193*
C80.8305 (9)0.2601 (3)0.2021 (2)0.0520 (12)
C90.9491 (9)0.2185 (3)0.1398 (3)0.0518 (13)
C100.8393 (9)0.1520 (3)0.1025 (2)0.0575 (13)
H100.69660.13590.11680.069*
C110.9413 (10)0.1093 (3)0.0440 (3)0.0673 (15)
H110.86610.06600.01810.081*
C121.1541 (11)0.1319 (3)0.0247 (3)0.0663 (15)
C131.2613 (9)0.1986 (3)0.0598 (3)0.0681 (15)
H131.40270.21530.04460.082*
C141.1604 (9)0.2411 (3)0.1174 (3)0.0639 (14)
H141.23550.28580.14160.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1383 (16)0.0987 (12)0.0876 (10)0.0156 (12)0.0383 (11)−0.0126 (9)
N10.069 (3)0.046 (3)0.081 (3)0.002 (3)−0.002 (3)−0.005 (2)
N20.078 (3)0.047 (3)0.079 (3)0.005 (3)−0.012 (3)−0.004 (2)
N30.050 (3)0.044 (2)0.066 (3)−0.006 (2)0.007 (2)−0.0108 (19)
O10.079 (3)0.045 (2)0.071 (2)0.002 (2)−0.019 (2)−0.0068 (17)
O20.069 (3)0.046 (2)0.086 (2)−0.004 (2)0.016 (2)−0.0039 (17)
S10.0914 (12)0.0756 (10)0.1037 (11)−0.0050 (10)−0.0315 (10)0.0091 (9)
C10.064 (4)0.058 (3)0.058 (3)−0.009 (3)−0.004 (3)−0.002 (3)
C20.074 (4)0.037 (3)0.056 (3)0.004 (3)0.001 (3)−0.005 (2)
C30.072 (4)0.046 (3)0.053 (3)0.001 (3)0.009 (3)−0.002 (2)
C40.074 (4)0.056 (3)0.058 (3)0.001 (3)−0.007 (3)−0.004 (3)
C50.088 (5)0.075 (4)0.074 (4)0.001 (4)−0.015 (4)0.007 (3)
C60.094 (5)0.109 (5)0.088 (4)0.010 (4)−0.017 (4)0.003 (3)
C70.140 (7)0.092 (5)0.154 (6)−0.018 (5)−0.040 (5)0.056 (5)
C80.056 (3)0.043 (3)0.057 (3)0.000 (3)0.000 (3)0.001 (2)
C90.057 (3)0.037 (3)0.062 (3)−0.002 (3)−0.006 (3)−0.003 (2)
C100.062 (4)0.044 (3)0.067 (3)−0.004 (3)0.001 (3)0.002 (2)
C110.097 (5)0.048 (3)0.056 (3)0.001 (3)−0.001 (3)−0.001 (3)
C120.084 (5)0.055 (3)0.059 (3)0.011 (4)0.007 (3)0.005 (3)
C130.063 (4)0.068 (4)0.074 (3)0.005 (3)0.014 (3)0.006 (3)
C140.067 (4)0.051 (3)0.074 (3)−0.003 (3)−0.002 (3)0.000 (3)

Geometric parameters (Å, °)

Cl1—C121.723 (5)C5—C61.535 (7)
N1—C11.321 (5)C5—H50.9800
N1—N21.382 (5)C6—H6A0.9600
N1—H10.8600C6—H6B0.9600
N2—C21.283 (5)C6—H6C0.9600
N3—C81.357 (5)C7—H7A0.9600
N3—C31.454 (5)C7—H7B0.9600
N3—H30.8600C7—H7C0.9600
O1—C21.363 (5)C8—C91.481 (6)
O1—C11.382 (5)C9—C141.379 (6)
O2—C81.232 (5)C9—C101.390 (6)
S1—C11.629 (5)C10—C111.390 (6)
C2—C31.483 (6)C10—H100.9300
C3—C41.527 (6)C11—C121.372 (7)
C3—H3A0.9800C11—H110.9300
C4—C51.522 (6)C12—C131.366 (6)
C4—H4A0.9700C13—C141.373 (6)
C4—H4B0.9700C13—H130.9300
C5—C71.498 (7)C14—H140.9300
C1—N1—N2114.3 (4)C5—C6—H6B109.5
C1—N1—H1122.9H6A—C6—H6B109.5
N2—N1—H1122.9C5—C6—H6C109.5
C2—N2—N1102.5 (4)H6A—C6—H6C109.5
C8—N3—C3121.5 (4)H6B—C6—H6C109.5
C8—N3—H3119.3C5—C7—H7A109.5
C3—N3—H3119.3C5—C7—H7B109.5
C2—O1—C1106.8 (3)H7A—C7—H7B109.5
N1—C1—O1103.3 (4)C5—C7—H7C109.5
N1—C1—S1132.6 (4)H7A—C7—H7C109.5
O1—C1—S1124.0 (4)H7B—C7—H7C109.5
N2—C2—O1113.1 (5)O2—C8—N3119.8 (4)
N2—C2—C3128.9 (5)O2—C8—C9122.9 (4)
O1—C2—C3117.9 (4)N3—C8—C9117.2 (4)
N3—C3—C2109.0 (3)C14—C9—C10118.6 (5)
N3—C3—C4111.9 (4)C14—C9—C8124.2 (4)
C2—C3—C4112.1 (4)C10—C9—C8117.3 (5)
N3—C3—H3A107.9C11—C10—C9120.4 (5)
C2—C3—H3A107.9C11—C10—H10119.8
C4—C3—H3A107.9C9—C10—H10119.8
C5—C4—C3114.9 (4)C12—C11—C10119.3 (5)
C5—C4—H4A108.5C12—C11—H11120.4
C3—C4—H4A108.5C10—C11—H11120.4
C5—C4—H4B108.5C13—C12—C11120.7 (5)
C3—C4—H4B108.5C13—C12—Cl1119.7 (5)
H4A—C4—H4B107.5C11—C12—Cl1119.6 (5)
C7—C5—C4113.0 (5)C12—C13—C14120.1 (5)
C7—C5—C6111.4 (5)C12—C13—H13120.0
C4—C5—C6110.2 (4)C14—C13—H13120.0
C7—C5—H5107.3C13—C14—C9120.9 (5)
C4—C5—H5107.3C13—C14—H14119.6
C6—C5—H5107.3C9—C14—H14119.6
C5—C6—H6A109.5
C1—N1—N2—C20.1 (6)C3—C4—C5—C6−179.7 (4)
N2—N1—C1—O10.3 (5)C3—N3—C8—O21.7 (7)
N2—N1—C1—S1178.2 (4)C3—N3—C8—C9−176.2 (4)
C2—O1—C1—N1−0.5 (5)O2—C8—C9—C14−165.1 (4)
C2—O1—C1—S1−178.7 (3)N3—C8—C9—C1412.7 (7)
N1—N2—C2—O1−0.5 (5)O2—C8—C9—C1014.3 (7)
N1—N2—C2—C3−178.1 (5)N3—C8—C9—C10−167.9 (4)
C1—O1—C2—N20.7 (5)C14—C9—C10—C110.1 (7)
C1—O1—C2—C3178.6 (4)C8—C9—C10—C11−179.3 (4)
C8—N3—C3—C2−98.1 (5)C9—C10—C11—C121.8 (7)
C8—N3—C3—C4137.4 (4)C10—C11—C12—C13−3.5 (7)
N2—C2—C3—N3−129.7 (5)C10—C11—C12—Cl1176.5 (3)
O1—C2—C3—N352.8 (6)C11—C12—C13—C143.2 (8)
N2—C2—C3—C4−5.2 (8)Cl1—C12—C13—C14−176.7 (4)
O1—C2—C3—C4177.2 (4)C12—C13—C14—C9−1.2 (7)
N3—C3—C4—C5−54.7 (6)C10—C9—C14—C13−0.4 (7)
C2—C3—C4—C5−177.5 (4)C8—C9—C14—C13178.9 (4)
C3—C4—C5—C7−54.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.872.720 (6)171
N3—H3···S1ii0.862.783.495 (4)142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5439).

References

  • Boland, Y., Hertsens, P., Marchand-Brynaert, J. & Garcia, Y. (2006). Synthesis, pp. 1504–1512.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, M., Zhao, X.-J. & Guo, J.-H. (2004). Acta Cryst. E60, o327–o328.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ginzel, K. D., Brungs, P. & Steckhan, E. (1989). Tetrahedron, 45, 1691–1701.
  • Havaldar, F. H. & Patil, A. R. (2009). Asian J. Chem.21, 5267–5272.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shriner, R. L. & Furrow, C. L. (1955). Org. Synth.35, 49–50.
  • Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem 16, 6663–6668. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Zareef, M., Iqbal, R., Zaidi, J. H., Arfan, M. & Parvez, M. (2006). Acta Cryst. E62, o2481–o2483.
  • Ziyaev, A. A., Galust’yan, G. G., Sabirov, K., Nasirov, S., Tashkhodzhaev, B. & Yag’budaev, M. R. (1992). Zh. Org. Khim 28, 1538–1543.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography