PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m607.
Published online 2010 May 8. doi:  10.1107/S1600536810014510
PMCID: PMC2979353

catena-Poly[[[diaqua­copper(II)]-μ-2,2′-{[p-phenyl­enebis(oxymethyl­ene)]bis­(pyridinium-3,1-di­yl)}diacetate] dibromide]

Abstract

The title centrosymmetric coordination polymer, {[Cu(C22H20N2O6)(H2O)2]Br2}n, formed by the reaction of the flexible double betaine ligand 2,2′-{[p-phenyl­enebis(oxymethyl­ene)]bis­(pyridine-3,1-di­yl)}diacetic acid with CuBr2, contains a Cu(II) atom (An external file that holds a picture, illustration, etc.
Object name is e-66-0m607-efi1.jpg symmetry) which is surrounded by two water molecules and bridged by two anions in a square-planar coordination. In the crystal, polymeric zigzag chains are linked via O—H(...)Br inter­actions, forming a two-dimensional network extending parallel to (011).

Related literature

For double betaine coordination polymers, see: Zhang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m607-scheme1.jpg

Experimental

Crystal data

  • [Cu(C22H20N2O6)(H2O)2]Br2
  • M r = 667.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m607-efi2.jpg
  • a = 7.5422 (7) Å
  • b = 9.3001 (8) Å
  • c = 9.9890 (9) Å
  • α = 64.194 (2)°
  • β = 79.405 (2)°
  • γ = 77.000 (2)°
  • V = 611.66 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 4.21 mm−1
  • T = 293 K
  • 0.52 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.218, T max = 0.365
  • 3313 measured reflections
  • 2129 independent reflections
  • 1746 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.163
  • S = 1.03
  • 2129 reflections
  • 160 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.95 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014510/su2168sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014510/su2168Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Zhongzhou University is greatly appreciated.

supplementary crystallographic information

Comment

Supramolecular assembly is a powerful tool in the design of metallo-organic based complex molecular architectures. Ligands of the double betaine type are known to be generators of variable coordination frameworks in organic-inorganic hybrid materials (Zhang et al., 2004).

The title complex is centrosymmetric and exists as infinite zigzag chains (Fig. 1). In the crystal the bromide serves as a hydrogen-bond acceptor and the coordinated water molecules as donors leading to the formation of a two-dimensional network (Fig. 2 and Table 1).

Experimental

An aqueous solution (5 ml of H2O) of 1,4-bis(3-picolyloxyl)benzene- N,N'-diacetate) [0.08 g, 0.2 mmol] and CuBr2 (0.067 g, 0.3 mmol) were mixed together and heated at 340 K for 10 min with continuous stirring. The mixture was then filtered and upon slow evaporation of the filtrate, at RT for several weeks, blue block-shaped crystals were obtained (Yield ca. 58% based on L).

Refinement

The water H-atoms were located in a difference electron-density map and were held fixed with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A portion of the infinite chain of the title compound, with atom labels and 50% probability displacement ellipsoids (Symmetry codes: A: -x+2, -y+2, -z+2; B: -x+1, -y+1, -z+1).
Fig. 2.
A view of the two-dimensional network formed as a result of the O—H···Br hydrogen bonds (dashed lines); Symmetry codes: A: -x, -y + 1, -z + 1; B: -x + 1, -y + 1, -z + 1; C: x + 1, y, z; D: -x + 2, -y + 1, -z + 1; D: x + ...

Crystal data

[Cu(C22H20N2O6)(H2O)2]Br2Z = 1
Mr = 667.78F(000) = 333
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5422 (7) ÅCell parameters from 126 reflections
b = 9.3001 (8) Åθ = 2.0–27.5°
c = 9.9890 (9) ŵ = 4.21 mm1
α = 64.194 (2)°T = 293 K
β = 79.405 (2)°Block, blue
γ = 77.000 (2)°0.52 × 0.30 × 0.30 mm
V = 611.66 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2129 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
graphiteRint = 0.087
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.218, Tmax = 0.365k = −10→11
3313 measured reflectionsl = −10→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1116P)2] where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.82 e Å3
3 restraintsΔρmin = −0.95 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.0266 (4)
Br1−0.09111 (11)0.71414 (10)0.61132 (10)0.0434 (4)
O10.4292 (7)0.6175 (6)0.6239 (5)0.0288 (12)
O1W0.2454 (8)0.4936 (11)0.5040 (10)0.089 (3)
H1WA0.19630.45630.46780.133*
H1WB0.18300.50870.53060.133*
O20.4295 (9)0.8338 (7)0.4071 (6)0.0462 (16)
O30.7158 (10)0.8939 (9)0.9512 (7)0.0570 (19)
N10.3377 (9)0.7917 (7)0.7897 (7)0.0290 (14)
C10.4042 (10)0.7683 (9)0.5435 (8)0.0293 (16)
C20.3214 (11)0.8765 (9)0.6271 (8)0.0315 (17)
H2A0.38260.97020.58610.038*
H2B0.19320.91480.61070.038*
C30.2186 (11)0.6898 (10)0.8751 (9)0.0347 (18)
H3A0.12880.67460.83210.042*
C40.2320 (11)0.6095 (10)1.0252 (9)0.0375 (19)
H4A0.15280.53731.08480.045*
C50.3618 (12)0.6351 (10)1.0880 (9)0.0381 (19)
H5A0.36810.58191.19070.046*
C60.4849 (11)0.7399 (9)1.0003 (8)0.0313 (17)
C70.4693 (11)0.8171 (9)0.8479 (8)0.0292 (16)
H7A0.55010.88670.78560.035*
C80.6243 (13)0.7737 (11)1.0664 (10)0.043 (2)
H8A0.56540.81101.14310.051*
H8B0.71090.67591.11170.051*
C90.8556 (11)0.9412 (11)0.9825 (10)0.0377 (19)
C100.9060 (12)0.8939 (11)1.1252 (9)0.040 (2)
H10A0.84310.82391.20870.047*
C110.9504 (12)1.0480 (11)0.8589 (9)0.039 (2)
H11A0.91571.08050.76400.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0268 (7)0.0331 (8)0.0283 (7)−0.0080 (5)−0.0023 (5)−0.0189 (6)
Br10.0384 (6)0.0471 (6)0.0532 (7)−0.0103 (4)−0.0074 (4)−0.0258 (5)
O10.032 (3)0.034 (3)0.026 (3)−0.006 (2)−0.002 (2)−0.018 (2)
O1W0.028 (3)0.140 (8)0.172 (9)−0.013 (4)0.001 (4)−0.136 (8)
O20.077 (5)0.041 (3)0.021 (3)−0.016 (3)0.001 (3)−0.012 (2)
O30.063 (4)0.075 (5)0.038 (4)−0.035 (4)−0.015 (3)−0.013 (3)
N10.036 (3)0.028 (3)0.027 (3)−0.006 (3)−0.001 (3)−0.014 (3)
C10.031 (4)0.032 (4)0.032 (4)−0.010 (3)−0.005 (3)−0.017 (3)
C20.042 (4)0.025 (4)0.028 (4)−0.008 (3)−0.005 (3)−0.010 (3)
C30.035 (4)0.037 (4)0.037 (4)−0.008 (3)−0.002 (3)−0.019 (4)
C40.038 (5)0.041 (5)0.031 (4)−0.015 (4)0.005 (3)−0.012 (4)
C50.045 (5)0.039 (4)0.022 (4)−0.002 (4)−0.002 (3)−0.007 (3)
C60.036 (4)0.033 (4)0.028 (4)0.001 (3)−0.007 (3)−0.017 (3)
C70.035 (4)0.026 (4)0.029 (4)−0.007 (3)−0.003 (3)−0.013 (3)
C80.050 (5)0.047 (5)0.034 (4)−0.006 (4)−0.011 (4)−0.018 (4)
C90.036 (4)0.046 (5)0.042 (5)−0.001 (4)−0.014 (4)−0.026 (4)
C100.042 (5)0.042 (5)0.035 (4)−0.003 (4)−0.004 (4)−0.018 (4)
C110.041 (5)0.053 (5)0.032 (4)−0.004 (4)−0.012 (4)−0.023 (4)

Geometric parameters (Å, °)

Cu1—O1i1.919 (5)C3—H3A0.9300
Cu1—O11.919 (5)C4—C51.368 (12)
Cu1—O1W1.927 (6)C4—H4A0.9300
Cu1—O1Wi1.927 (6)C5—C61.394 (12)
O1—C11.266 (9)C5—H5A0.9300
O1W—H1WA0.7774C6—C71.387 (11)
O1W—H1WB0.5183C6—C81.492 (12)
O2—C11.223 (9)C7—H7A0.9300
O3—C91.361 (11)C8—H8A0.9700
O3—C81.409 (11)C8—H8B0.9700
N1—C71.348 (10)C9—C111.396 (12)
N1—C31.353 (10)C9—C101.396 (12)
N1—C21.480 (9)C10—C11ii1.376 (13)
C1—C21.535 (10)C10—H10A0.9300
C2—H2A0.9700C11—C10ii1.376 (13)
C2—H2B0.9700C11—H11A0.9300
C3—C41.365 (11)
O1i—Cu1—O1180C3—C4—H4A119.9
O1i—Cu1—O1W91.4 (2)C5—C4—H4A119.9
O1—Cu1—O1W88.6 (2)C4—C5—C6120.9 (7)
O1i—Cu1—O1Wi88.6 (2)C4—C5—H5A119.5
O1—Cu1—O1Wi91.4 (2)C6—C5—H5A119.5
O1W—Cu1—O1Wi180C7—C6—C5117.4 (7)
C1—O1—Cu1110.1 (5)C7—C6—C8120.6 (7)
Cu1—O1W—H1WA131.9C5—C6—C8122.0 (7)
Cu1—O1W—H1WB138.6N1—C7—C6120.3 (7)
H1WA—O1W—H1WB89.3N1—C7—H7A119.8
C9—O3—C8119.4 (7)C6—C7—H7A119.8
C7—N1—C3122.2 (7)O3—C8—C6108.1 (7)
C7—N1—C2119.7 (6)O3—C8—H8A110.1
C3—N1—C2118.1 (7)C6—C8—H8A110.1
O2—C1—O1126.5 (7)O3—C8—H8B110.1
O2—C1—C2117.8 (7)C6—C8—H8B110.1
O1—C1—C2115.6 (6)H8A—C8—H8B108.4
N1—C2—C1112.9 (6)O3—C9—C11115.3 (7)
N1—C2—H2A109.0O3—C9—C10125.3 (8)
C1—C2—H2A109.0C11—C9—C10119.4 (8)
N1—C2—H2B109.0C11ii—C10—C9119.3 (8)
C1—C2—H2B109.0C11ii—C10—H10A120.4
H2A—C2—H2B107.8C9—C10—H10A120.4
N1—C3—C4119.1 (8)C10ii—C11—C9121.3 (8)
N1—C3—H3A120.5C10ii—C11—H11A119.3
C4—C3—H3A120.5C9—C11—H11A119.3
C3—C4—C5120.1 (8)
O1i—Cu1—O1—C1112 (100)C4—C5—C6—C8178.2 (8)
O1W—Cu1—O1—C1−91.2 (6)C3—N1—C7—C6−1.1 (11)
O1Wi—Cu1—O1—C188.8 (6)C2—N1—C7—C6179.3 (7)
Cu1—O1—C1—O2−3.7 (10)C5—C6—C7—N10.9 (11)
Cu1—O1—C1—C2171.9 (5)C8—C6—C7—N1−176.9 (7)
C7—N1—C2—C1101.3 (8)C9—O3—C8—C6−177.3 (7)
C3—N1—C2—C1−78.4 (9)C7—C6—C8—O32.8 (11)
O2—C1—C2—N1−166.3 (7)C5—C6—C8—O3−175.0 (7)
O1—C1—C2—N117.8 (9)C8—O3—C9—C11173.5 (8)
C7—N1—C3—C4−0.1 (12)C8—O3—C9—C10−7.8 (13)
C2—N1—C3—C4179.5 (7)O3—C9—C10—C11ii−179.5 (9)
N1—C3—C4—C51.4 (12)C11—C9—C10—C11ii−0.8 (14)
C3—C4—C5—C6−1.5 (13)O3—C9—C11—C10ii179.6 (8)
C4—C5—C6—C70.4 (12)C10—C9—C11—C10ii0.8 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Br10.522.743.220 (9)155
O1W—H1WA···Br1iii0.782.383.139 (9)167

Symmetry codes: (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2168).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison,Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413–2425.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography