PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1444–o1445.
Published online 2010 May 26. doi:  10.1107/S1600536810018611
PMCID: PMC2979351

19-[(E)-4-Chloro­benzyl­idene]-16-(4-chloro­phen­yl)-2-hydr­oxy-1,11-diaza­hexa­cyclo­[15.3.1.02,10.03,8.010,17.011,15]henicosa-3(8),4,6-triene-9,18-dione

Abstract

In the title compound, C32H26Cl2N2O3, the piperidone ring adopts a chair conformation and the proline and pyrrolidine rings adopt envelope conformations. The indane ring system is essentially planar with an r.m.s. deviation of 0.011 Å for the non-H atoms. The dihedral angle between the two chloro-substituted benzene rings is 63.69 (10)°. Intra­molecular C—H(...)O and N—H(...)O hydrogen bonds may influence the mol­ecular conformation. In the crystal structure, mol­ecules are connected into layers by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For cyclo­addition reactions, see: Dondas et al. (2004 [triangle]); Boruah et al. (2007 [triangle]). For applications of pyrrolizines, see: Boruah et al. (2007 [triangle]); Dimmock et al. (2001 [triangle]); El-Subbagh et al. (2000 [triangle]); Lee et al. (2001 [triangle]); Liddell (1998 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1444-scheme1.jpg

Experimental

Crystal data

  • C32H26Cl2N2O3
  • M r = 557.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1444-efi1.jpg
  • a = 14.603 (2) Å
  • b = 10.5701 (14) Å
  • c = 21.808 (2) Å
  • β = 130.094 (6)°
  • V = 2575.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100 K
  • 0.34 × 0.19 × 0.11 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.906, T max = 0.969
  • 27859 measured reflections
  • 7631 independent reflections
  • 5380 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.186
  • S = 1.06
  • 7631 reflections
  • 356 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018611/lh5043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018611/lh5043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under University Research grant No. 1001/PKIMIA/8111016 and RSK thanks Universiti Sains Malaysia for the award of post doctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al. 2007). The pyrrolizine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (Dimmock et al., 2001) and anticancer properties (El-Subbagh et al., 2000) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001). In view of the biological importance of aforementioned heterocycles, the crystal structure determination of the title compound was carried out and the results are presented herein.

The molecular structure of the title compound is shown in Fig.1. The piperidone (N1/C8–C12) ring adopts a chair conformation [Q = 0.608 (3) Å, Θ = 37.4 (3)°, [var phi]= 59.8 (4)°; Cremer & Pople, 1975]. The proline ring (N2/C22–C25) and the five membered pyrrolidine ring (N1/C10/C11/C13/C14) adopt envelope conformations [puckering parameters Q = 0.398 (3) Å, [var phi] = 269.4 (4)° and Q = 0.470 (3) Å, [var phi] = 214.4 (3)° respectively]. The indane ring system is essentially planar with an rms deviation of 0.011 Å for the non-hydrogen atoms. The dihedral angle between the two chlorophenyl rings (C1–C6) and (C27–C32) is 63.69 (10)°. In the crystal structure, molecules are connected into layers by intermolecular weak C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

A mixture of 3,5-bis[(E)-(4-chlorophenyl)methylidene] tetrahydro-4-(1H)-pyridinone (0.100 g, 0.291 mmol), ninhydrin (0.052 g, 0.291 mmol) and proline (0.033 g, 0.291 mmol) were dissolved in methanol (10 mL) and refluxed for 30 minutes. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as yellow crystals.

Refinement

Atom H1O2 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [O–H = 0.86 (4) Å and C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme (H atoms are omitted for clarity).
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms are not involing the hydrogen bond interactions are omitted for clarity.

Crystal data

C32H26Cl2N2O3F(000) = 1160
Mr = 557.45Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5137 reflections
a = 14.603 (2) Åθ = 2.3–29.6°
b = 10.5701 (14) ŵ = 0.29 mm1
c = 21.808 (2) ÅT = 100 K
β = 130.094 (6)°Block, yellow
V = 2575.1 (5) Å30.34 × 0.19 × 0.11 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer7631 independent reflections
Radiation source: fine-focus sealed tube5380 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 30.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −19→20
Tmin = 0.906, Tmax = 0.969k = −14→14
27859 measured reflectionsl = −30→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.1017P)2 + 1.0123P] where P = (Fo2 + 2Fc2)/3
7631 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.72105 (6)0.37813 (6)0.23348 (4)0.03884 (18)
Cl20.28180 (6)1.55604 (6)0.30038 (4)0.03719 (17)
O10.70242 (16)1.14499 (14)0.37668 (9)0.0270 (3)
O20.75301 (15)0.85624 (15)0.61320 (9)0.0248 (3)
O30.97349 (14)1.06477 (14)0.56290 (9)0.0265 (3)
N10.62861 (16)0.87558 (16)0.47338 (10)0.0205 (3)
N20.83265 (17)1.08411 (16)0.62301 (10)0.0230 (4)
C10.8080 (2)0.7298 (2)0.31990 (13)0.0278 (5)
H1A0.87060.78590.33990.033*
C20.8108 (2)0.6108 (2)0.29435 (14)0.0315 (5)
H2A0.87440.58760.29660.038*
C30.7182 (2)0.5272 (2)0.26543 (13)0.0273 (5)
C40.6213 (2)0.5618 (2)0.25928 (13)0.0268 (5)
H4A0.55910.50500.23930.032*
C50.6175 (2)0.6819 (2)0.28318 (12)0.0245 (4)
H5A0.55110.70650.27740.029*
C60.7127 (2)0.76651 (19)0.31604 (12)0.0225 (4)
C70.71498 (19)0.89214 (19)0.34519 (11)0.0221 (4)
H7A0.75110.95610.33800.026*
C80.67102 (18)0.92557 (18)0.38095 (11)0.0201 (4)
C90.69127 (19)1.05940 (18)0.40864 (11)0.0210 (4)
C100.69859 (19)1.08168 (18)0.48066 (11)0.0193 (4)
C110.59325 (19)1.00825 (19)0.46492 (12)0.0214 (4)
H11A0.58421.03070.50390.026*
H11B0.51871.02510.41150.026*
C120.61408 (19)0.83699 (19)0.40280 (11)0.0214 (4)
H12A0.52920.83060.35730.026*
H12B0.64860.75340.41260.026*
C130.80569 (19)1.01008 (18)0.55666 (11)0.0198 (4)
C140.75404 (19)0.87571 (19)0.55007 (11)0.0207 (4)
C150.8366 (2)0.78312 (19)0.55386 (12)0.0222 (4)
C160.8318 (2)0.6517 (2)0.55102 (13)0.0269 (5)
H16A0.77280.60850.54720.032*
C170.9170 (2)0.5864 (2)0.55402 (14)0.0317 (5)
H17A0.91460.49850.55190.038*
C181.0055 (2)0.6494 (2)0.56008 (15)0.0321 (5)
H18A1.06210.60340.56250.039*
C191.0108 (2)0.7800 (2)0.56257 (13)0.0275 (5)
H19A1.06980.82280.56630.033*
C200.92553 (19)0.84543 (19)0.55940 (11)0.0216 (4)
C210.91251 (19)0.98351 (19)0.56015 (11)0.0209 (4)
C220.9558 (2)1.0914 (2)0.70050 (12)0.0278 (5)
H22A1.01401.07530.69360.033*
H22B0.96751.03050.73830.033*
C230.9671 (2)1.2266 (2)0.72949 (13)0.0307 (5)
H23A1.04951.25550.76370.037*
H23B0.93761.23330.75840.037*
C240.8886 (2)1.3011 (2)0.65101 (13)0.0286 (5)
H24A0.86441.38150.65800.034*
H24B0.92981.31610.63030.034*
C250.7816 (2)1.21395 (19)0.59597 (12)0.0237 (4)
H25A0.72311.22780.60360.028*
C260.7192 (2)1.22071 (18)0.50652 (12)0.0210 (4)
H26A0.77771.25450.50250.025*
C270.6102 (2)1.30567 (18)0.45664 (12)0.0221 (4)
C280.5997 (2)1.39566 (19)0.40587 (13)0.0251 (4)
H28A0.66081.40370.40360.030*
C290.4999 (2)1.4740 (2)0.35843 (13)0.0281 (5)
H29A0.49491.53440.32540.034*
C300.4084 (2)1.46082 (19)0.36103 (14)0.0277 (5)
C310.4160 (2)1.3725 (2)0.41077 (16)0.0322 (5)
H31A0.35421.36450.41240.039*
C320.5155 (2)1.2962 (2)0.45792 (15)0.0313 (5)
H32A0.52021.23710.49140.038*
H1O20.782 (4)0.925 (4)0.640 (3)0.077 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0295 (3)0.0352 (3)0.0469 (3)−0.0032 (3)0.0224 (3)−0.0176 (2)
Cl20.0401 (4)0.0299 (3)0.0441 (3)0.0115 (3)0.0283 (3)0.0032 (2)
O10.0343 (9)0.0231 (7)0.0303 (7)0.0004 (7)0.0238 (7)0.0030 (6)
O20.0299 (8)0.0265 (7)0.0239 (7)−0.0057 (7)0.0199 (7)−0.0006 (6)
O30.0230 (8)0.0262 (7)0.0299 (7)−0.0067 (6)0.0169 (7)−0.0007 (6)
N10.0182 (8)0.0210 (7)0.0211 (7)−0.0033 (7)0.0121 (7)−0.0020 (6)
N20.0238 (9)0.0227 (8)0.0191 (7)−0.0050 (7)0.0123 (7)−0.0038 (6)
C10.0239 (11)0.0296 (10)0.0326 (10)−0.0059 (9)0.0195 (10)−0.0061 (8)
C20.0252 (11)0.0354 (12)0.0370 (12)−0.0043 (10)0.0215 (11)−0.0087 (9)
C30.0251 (11)0.0282 (10)0.0271 (10)−0.0037 (9)0.0161 (10)−0.0078 (8)
C40.0225 (11)0.0310 (10)0.0256 (10)−0.0063 (9)0.0148 (9)−0.0084 (8)
C50.0213 (10)0.0292 (10)0.0241 (9)−0.0007 (9)0.0151 (9)−0.0035 (8)
C60.0213 (10)0.0252 (9)0.0198 (8)−0.0007 (8)0.0127 (8)−0.0003 (7)
C70.0201 (10)0.0222 (9)0.0203 (8)−0.0019 (8)0.0114 (8)−0.0008 (7)
C80.0171 (9)0.0207 (8)0.0173 (8)−0.0009 (8)0.0087 (8)0.0004 (7)
C90.0185 (10)0.0213 (9)0.0191 (8)0.0003 (8)0.0103 (8)−0.0001 (7)
C100.0198 (9)0.0174 (8)0.0206 (8)−0.0017 (8)0.0129 (8)−0.0014 (6)
C110.0190 (10)0.0217 (9)0.0215 (9)−0.0021 (8)0.0121 (8)−0.0017 (7)
C120.0189 (10)0.0230 (9)0.0197 (8)−0.0031 (8)0.0112 (8)−0.0027 (7)
C130.0205 (10)0.0180 (8)0.0192 (8)−0.0046 (8)0.0120 (8)−0.0017 (6)
C140.0205 (10)0.0216 (9)0.0206 (8)−0.0049 (8)0.0135 (8)−0.0006 (7)
C150.0227 (10)0.0212 (9)0.0217 (9)−0.0027 (8)0.0138 (9)0.0004 (7)
C160.0312 (12)0.0218 (9)0.0302 (10)−0.0025 (9)0.0209 (10)0.0019 (8)
C170.0373 (13)0.0221 (10)0.0355 (11)0.0032 (10)0.0233 (11)0.0025 (8)
C180.0318 (13)0.0285 (10)0.0381 (12)0.0081 (10)0.0235 (11)0.0044 (9)
C190.0240 (11)0.0299 (10)0.0302 (10)0.0031 (9)0.0182 (10)0.0047 (8)
C200.0195 (10)0.0232 (9)0.0196 (8)−0.0006 (8)0.0114 (8)0.0020 (7)
C210.0175 (9)0.0218 (9)0.0181 (8)−0.0003 (8)0.0090 (8)0.0021 (7)
C220.0248 (11)0.0275 (10)0.0207 (9)−0.0058 (9)0.0099 (9)−0.0042 (8)
C230.0307 (12)0.0320 (11)0.0245 (10)−0.0110 (10)0.0155 (10)−0.0087 (8)
C240.0311 (12)0.0236 (9)0.0283 (10)−0.0085 (9)0.0179 (10)−0.0088 (8)
C250.0271 (11)0.0212 (9)0.0257 (9)−0.0036 (8)0.0184 (9)−0.0041 (7)
C260.0229 (10)0.0185 (8)0.0241 (9)−0.0028 (8)0.0162 (9)−0.0024 (7)
C270.0249 (10)0.0178 (8)0.0251 (9)−0.0029 (8)0.0168 (9)−0.0032 (7)
C280.0296 (11)0.0211 (9)0.0316 (10)−0.0019 (9)0.0228 (10)−0.0014 (7)
C290.0328 (12)0.0220 (9)0.0300 (10)0.0007 (9)0.0205 (10)0.0023 (8)
C300.0308 (12)0.0189 (9)0.0344 (11)0.0028 (9)0.0214 (10)−0.0028 (8)
C310.0331 (13)0.0267 (10)0.0492 (14)0.0007 (10)0.0322 (12)0.0015 (9)
C320.0400 (14)0.0227 (10)0.0456 (13)0.0027 (10)0.0341 (12)0.0068 (9)

Geometric parameters (Å, °)

Cl1—C31.734 (2)C13—C141.571 (3)
Cl2—C301.741 (2)C14—C151.514 (3)
O1—C91.215 (2)C15—C201.390 (3)
O2—C141.402 (2)C15—C161.391 (3)
O2—H1O20.86 (4)C16—C171.387 (4)
O3—C211.211 (3)C16—H16A0.9300
N1—C111.464 (3)C17—C181.382 (4)
N1—C121.470 (3)C17—H17A0.9300
N1—C141.485 (3)C18—C191.382 (3)
N2—C131.459 (2)C18—H18A0.9300
N2—C221.477 (3)C19—C201.386 (3)
N2—C251.490 (3)C19—H19A0.9300
C1—C21.387 (3)C20—C211.473 (3)
C1—C61.393 (3)C22—C231.528 (3)
C1—H1A0.9300C22—H22A0.9700
C2—C31.382 (3)C22—H22B0.9700
C2—H2A0.9300C23—C241.529 (3)
C3—C41.382 (3)C23—H23A0.9700
C4—C51.386 (3)C23—H23B0.9700
C4—H4A0.9300C24—C251.521 (3)
C5—C61.401 (3)C24—H24A0.9700
C5—H5A0.9300C24—H24B0.9700
C6—C71.464 (3)C25—C261.533 (3)
C7—C81.338 (3)C25—H25A0.9800
C7—H7A0.9300C26—C271.515 (3)
C8—C91.491 (3)C26—H26A0.9800
C8—C121.518 (3)C27—C281.391 (3)
C9—C101.522 (3)C27—C321.404 (3)
C10—C261.533 (3)C28—C291.392 (3)
C10—C111.551 (3)C28—H28A0.9300
C10—C131.558 (3)C29—C301.380 (4)
C11—H11A0.9700C29—H29A0.9300
C11—H11B0.9700C30—C311.381 (3)
C12—H12A0.9700C31—C321.376 (3)
C12—H12B0.9700C31—H31A0.9300
C13—C211.538 (3)C32—H32A0.9300
C14—O2—H1O2103 (3)C17—C16—C15118.5 (2)
C11—N1—C12109.42 (15)C17—C16—H16A120.8
C11—N1—C14102.71 (15)C15—C16—H16A120.8
C12—N1—C14114.90 (17)C18—C17—C16121.3 (2)
C13—N2—C22120.99 (18)C18—C17—H17A119.3
C13—N2—C25110.79 (15)C16—C17—H17A119.3
C22—N2—C25109.58 (16)C17—C18—C19120.7 (2)
C2—C1—C6121.0 (2)C17—C18—H18A119.7
C2—C1—H1A119.5C19—C18—H18A119.7
C6—C1—H1A119.5C18—C19—C20118.1 (2)
C3—C2—C1119.3 (2)C18—C19—H19A121.0
C3—C2—H2A120.4C20—C19—H19A121.0
C1—C2—H2A120.4C19—C20—C15121.8 (2)
C2—C3—C4121.0 (2)C19—C20—C21127.7 (2)
C2—C3—Cl1119.65 (18)C15—C20—C21110.51 (19)
C4—C3—Cl1119.31 (18)O3—C21—C20127.4 (2)
C3—C4—C5119.4 (2)O3—C21—C13124.27 (19)
C3—C4—H4A120.3C20—C21—C13108.33 (17)
C5—C4—H4A120.3N2—C22—C23104.47 (19)
C4—C5—C6120.7 (2)N2—C22—H22A110.9
C4—C5—H5A119.7C23—C22—H22A110.9
C6—C5—H5A119.7N2—C22—H22B110.9
C1—C6—C5118.44 (19)C23—C22—H22B110.9
C1—C6—C7119.0 (2)H22A—C22—H22B108.9
C5—C6—C7122.6 (2)C22—C23—C24102.44 (16)
C8—C7—C6127.4 (2)C22—C23—H23A111.3
C8—C7—H7A116.3C24—C23—H23A111.3
C6—C7—H7A116.3C22—C23—H23B111.3
C7—C8—C9116.25 (19)C24—C23—H23B111.3
C7—C8—C12125.83 (18)H23A—C23—H23B109.2
C9—C8—C12117.63 (18)C25—C24—C23102.73 (17)
O1—C9—C8122.60 (18)C25—C24—H24A111.2
O1—C9—C10122.02 (18)C23—C24—H24A111.2
C8—C9—C10115.37 (17)C25—C24—H24B111.2
C9—C10—C26113.24 (16)C23—C24—H24B111.2
C9—C10—C11107.07 (16)H24A—C24—H24B109.1
C26—C10—C11119.53 (17)N2—C25—C24104.33 (18)
C9—C10—C13112.20 (17)N2—C25—C26106.39 (15)
C26—C10—C13104.45 (15)C24—C25—C26116.25 (18)
C11—C10—C1399.52 (15)N2—C25—H25A109.9
N1—C11—C10103.43 (16)C24—C25—H25A109.9
N1—C11—H11A111.1C26—C25—H25A109.9
C10—C11—H11A111.1C27—C26—C10115.95 (17)
N1—C11—H11B111.1C27—C26—C25115.44 (17)
C10—C11—H11B111.1C10—C26—C25103.79 (15)
H11A—C11—H11B109.0C27—C26—H26A107.0
N1—C12—C8114.75 (16)C10—C26—H26A107.0
N1—C12—H12A108.6C25—C26—H26A107.0
C8—C12—H12A108.6C28—C27—C32117.3 (2)
N1—C12—H12B108.6C28—C27—C26120.2 (2)
C8—C12—H12B108.6C32—C27—C26122.47 (18)
H12A—C12—H12B107.6C27—C28—C29121.6 (2)
N2—C13—C21115.59 (17)C27—C28—H28A119.2
N2—C13—C10103.85 (16)C29—C28—H28A119.2
C21—C13—C10115.64 (16)C30—C29—C28119.2 (2)
N2—C13—C14112.50 (15)C30—C29—H29A120.4
C21—C13—C14104.56 (16)C28—C29—H29A120.4
C10—C13—C14104.36 (16)C29—C30—C31120.7 (2)
O2—C14—N1108.68 (17)C29—C30—Cl2119.54 (17)
O2—C14—C15111.33 (16)C31—C30—Cl2119.76 (19)
N1—C14—C15114.98 (16)C32—C31—C30119.6 (2)
O2—C14—C13110.56 (15)C32—C31—H31A120.2
N1—C14—C13105.97 (15)C30—C31—H31A120.2
C15—C14—C13105.12 (17)C31—C32—C27121.5 (2)
C20—C15—C16119.7 (2)C31—C32—H32A119.2
C20—C15—C14111.42 (17)C27—C32—H32A119.2
C16—C15—C14128.9 (2)
C6—C1—C2—C3−0.7 (4)C10—C13—C14—C15124.24 (16)
C1—C2—C3—C42.1 (4)O2—C14—C15—C20−121.38 (18)
C1—C2—C3—Cl1−179.90 (18)N1—C14—C15—C20114.48 (19)
C2—C3—C4—C5−0.6 (3)C13—C14—C15—C20−1.6 (2)
Cl1—C3—C4—C5−178.64 (17)O2—C14—C15—C1659.9 (3)
C3—C4—C5—C6−2.3 (3)N1—C14—C15—C16−64.2 (3)
C2—C1—C6—C5−2.1 (3)C13—C14—C15—C16179.6 (2)
C2—C1—C6—C7178.8 (2)C20—C15—C16—C170.1 (3)
C4—C5—C6—C13.6 (3)C14—C15—C16—C17178.8 (2)
C4—C5—C6—C7−177.36 (19)C15—C16—C17—C180.3 (3)
C1—C6—C7—C8−146.5 (2)C16—C17—C18—C19−0.6 (4)
C5—C6—C7—C834.5 (3)C17—C18—C19—C200.5 (3)
C6—C7—C8—C9176.88 (19)C18—C19—C20—C150.0 (3)
C6—C7—C8—C123.3 (3)C18—C19—C20—C21−179.2 (2)
C7—C8—C9—O127.9 (3)C16—C15—C20—C19−0.3 (3)
C12—C8—C9—O1−158.0 (2)C14—C15—C20—C19−179.13 (18)
C7—C8—C9—C10−151.40 (19)C16—C15—C20—C21179.02 (18)
C12—C8—C9—C1022.7 (3)C14—C15—C20—C210.2 (2)
O1—C9—C10—C260.8 (3)C19—C20—C21—O30.8 (3)
C8—C9—C10—C26−179.89 (18)C15—C20—C21—O3−178.47 (19)
O1—C9—C10—C11134.7 (2)C19—C20—C21—C13−179.31 (19)
C8—C9—C10—C11−46.0 (2)C15—C20—C21—C131.4 (2)
O1—C9—C10—C13−117.1 (2)N2—C13—C21—O3−58.2 (3)
C8—C9—C10—C1362.2 (2)C10—C13—C21—O363.4 (3)
C12—N1—C11—C10−74.00 (18)C14—C13—C21—O3177.57 (18)
C14—N1—C11—C1048.50 (18)N2—C13—C21—C20121.89 (17)
C9—C10—C11—N171.07 (18)C10—C13—C21—C20−116.49 (17)
C26—C10—C11—N1−158.51 (16)C14—C13—C21—C20−2.35 (19)
C13—C10—C11—N1−45.81 (17)C13—N2—C22—C23144.02 (19)
C11—N1—C12—C850.1 (2)C25—N2—C22—C2313.2 (2)
C14—N1—C12—C8−64.8 (2)N2—C22—C23—C24−33.2 (2)
C7—C8—C12—N1150.2 (2)C22—C23—C24—C2540.6 (2)
C9—C8—C12—N1−23.3 (3)C13—N2—C25—C24−123.78 (18)
C22—N2—C13—C21−21.8 (3)C22—N2—C25—C2412.2 (2)
C25—N2—C13—C21108.51 (19)C13—N2—C25—C26−0.3 (2)
C22—N2—C13—C10−149.50 (18)C22—N2—C25—C26135.68 (18)
C25—N2—C13—C10−19.2 (2)C23—C24—C25—N2−32.7 (2)
C22—N2—C13—C1498.2 (2)C23—C24—C25—C26−149.45 (19)
C25—N2—C13—C14−131.49 (18)C9—C10—C26—C2778.5 (2)
C9—C10—C13—N2154.42 (16)C11—C10—C26—C27−49.1 (2)
C26—C10—C13—N231.4 (2)C13—C10—C26—C27−159.14 (17)
C11—C10—C13—N2−92.63 (17)C9—C10—C26—C25−153.81 (18)
C9—C10—C13—C2126.7 (2)C11—C10—C26—C2578.6 (2)
C26—C10—C13—C21−96.33 (19)C13—C10—C26—C25−31.4 (2)
C11—C10—C13—C21139.66 (17)N2—C25—C26—C27148.12 (18)
C9—C10—C13—C14−87.54 (19)C24—C25—C26—C27−96.2 (2)
C26—C10—C13—C14149.42 (16)N2—C25—C26—C1020.1 (2)
C11—C10—C13—C1425.41 (18)C24—C25—C26—C10135.8 (2)
C11—N1—C14—O288.01 (18)C10—C26—C27—C28−108.6 (2)
C12—N1—C14—O2−153.27 (16)C25—C26—C27—C28129.7 (2)
C11—N1—C14—C15−146.47 (17)C10—C26—C27—C3270.1 (3)
C12—N1—C14—C15−27.7 (2)C25—C26—C27—C32−51.6 (3)
C11—N1—C14—C13−30.83 (19)C32—C27—C28—C290.4 (3)
C12—N1—C14—C1387.89 (19)C26—C27—C28—C29179.10 (19)
N2—C13—C14—O2−3.6 (2)C27—C28—C29—C30−0.9 (3)
C21—C13—C14—O2122.61 (17)C28—C29—C30—C310.9 (3)
C10—C13—C14—O2−115.52 (18)C28—C29—C30—Cl2−178.67 (17)
N2—C13—C14—N1114.01 (18)C29—C30—C31—C32−0.4 (4)
C21—C13—C14—N1−119.79 (16)Cl2—C30—C31—C32179.21 (19)
C10—C13—C14—N12.1 (2)C30—C31—C32—C27−0.2 (4)
N2—C13—C14—C15−123.83 (18)C28—C27—C32—C310.2 (3)
C21—C13—C14—C152.37 (18)C26—C27—C32—C31−178.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.86 (5)1.97 (5)2.623 (3)133 (5)
C1—H1A···O3i0.932.443.305 (3)155
C22—H22A···O30.972.513.186 (3)126
C23—H23A···O2ii0.972.593.506 (3)158

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5043).

References

  • Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett.48, 4535–4537.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem.44, 586–593. [PubMed]
  • Dondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473–3485.
  • El-Subbagh, H. I., Abu–Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem.43, 2915–2921. [PubMed]
  • Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett.42, 3483–3486.
  • Liddell, J. R. (1998). Nat. Prod. Rep.15, 363–370. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography