PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m500.
Published online 2010 April 10. doi:  10.1107/S1600536810011785
PMCID: PMC2979296

Tris[2-(1H-imidazol-2-yl)imidazol-1-ido]cobalt(III)

Abstract

In the title compound, [Co(C6H5N4)3], the CoIII atom adopts a distorted octa­hedral CoN6 coordination geometry, arising from three N,N′-bidentate deprotonated 2,2′-biimidazole ligands. The dihedral angles between the five-membered rings of the ligands are 4.1 (2), 9.4 (2) and 10.5 (2)°. In the crystal, mol­ecules are linked by N—H(...)N hydrogen bonds, generating a layered network lying in (11An external file that holds a picture, illustration, etc.
Object name is e-66-0m500-efi1.jpg).

Related literature

For related structures, see: Tadokoro & Nakasuji (2000 [triangle]); Ye et al. (2005 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m500-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H5N4)3]
  • M r = 458.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m500-efi2.jpg
  • a = 12.299 (3) Å
  • b = 12.524 (3) Å
  • c = 12.932 (3) Å
  • β = 97.773 (4)°
  • V = 1973.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 293 K
  • 0.5 × 0.4 × 0.3 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.654, T max = 0.762
  • 10212 measured reflections
  • 3728 independent reflections
  • 2358 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.138
  • S = 0.98
  • 3728 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011785/hb5377sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011785/hb5377Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Province Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008, as well as Doctor Startup Foundation of Shanxi University of China.

supplementary crystallographic information

Comment

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property. Namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro & Nakasuji, 2000). The crystal structure of (I) is reported here.

The X-ray crystallographic analysis shows that the molecule of the compound (I) consists of three Hbiim- and one Co3+ (Fig. 1). The Co3+ ion adopted octahedron coordination geometry, and coordinated with three Hbiim- anion. Average bond distance Co—N is 1.93 (3) Å, shorter than Co—N bond distance found in related structures, i.e. 2.116 (2)-2.118Å in [Co(H2biim)2(1,2-bdc)] (Ye et al., 2005), 2.1563 (18)Å , in diaquabis(2,2'-biimidazole)cobalt(II) dichloride (Zhang et al., 2008). In the crystalline state, the neighboring molecules are linked furtherly by N—H···N hydrogen bonding forming supermolecular structure(Fig. 2).

Experimental

CoCl2.6H2O (0.1904 g, 0.8 mmol), biimidazole (0.107 g, 1 mmol), and water (10 ml) were added to an aqueous solution (5 ml) containing NaN3 (0.028 g,0.4 mmol). The resulting mixture was further stirred for 15 min in air, and then transferred and sealed in a 20 ml Teflon-lined reactor, which was heated at 423 K for 4 days and then cooled to room temperature at a rate of 5 K h-1. Red blocks of (I) were obtained and washed with water.

Refinement

H atoms attached to C and N atoms of (I) were placed in geometrically idealized positions (C—H = 0.93Å, N—H = 0.86Å and constrained to ride on their parent atoms.

Figures

Fig. 1.
A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
hydrogen bond interaction in neighboring molecules.

Crystal data

[Co(C6H5N4)3]F(000) = 936
Mr = 458.35Dx = 1.543 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10212 reflections
a = 12.299 (3) Åθ = 2.3–20.5°
b = 12.524 (3) ŵ = 0.90 mm1
c = 12.932 (3) ÅT = 293 K
β = 97.773 (4)°Block, red
V = 1973.6 (8) Å30.5 × 0.4 × 0.3 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3728 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −14→15
Tmin = 0.654, Tmax = 0.762k = −15→13
10212 measured reflectionsl = −15→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0798P)2] where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.14643 (4)0.83171 (4)0.84581 (4)0.03246 (19)
N10.1905 (2)0.8669 (2)0.7123 (2)0.0325 (7)
N20.0080 (2)0.8920 (2)0.7814 (2)0.0348 (7)
N30.2012 (2)0.9650 (2)0.9055 (2)0.0324 (7)
N40.2936 (2)0.7858 (2)0.8922 (2)0.0344 (7)
N50.1019 (2)0.7861 (2)0.9773 (2)0.0348 (8)
N60.0917 (2)0.6922 (2)0.8032 (3)0.0365 (8)
C50.2563 (3)0.9108 (3)0.5682 (3)0.0400 (10)
H20.30510.91910.51970.048*
C60.2817 (3)0.8656 (3)0.6656 (3)0.0396 (10)
H10.34980.83880.69390.048*
N120.1482 (2)0.9419 (2)0.5534 (2)0.0360 (8)
C40.1135 (3)0.9131 (3)0.6429 (3)0.0308 (8)
C30.0105 (3)0.9241 (3)0.6834 (3)0.0343 (9)
N11−0.0888 (2)0.9582 (2)0.6405 (3)0.0433 (9)
H6−0.10590.98290.57830.052*
C2−0.1578 (3)0.9462 (4)0.7141 (4)0.0516 (12)
H7−0.23220.96270.70600.062*
C1−0.0984 (3)0.9061 (3)0.8007 (3)0.0435 (10)
H8−0.12490.89050.86300.052*
C180.0637 (4)0.6367 (3)0.7131 (3)0.0477 (11)
H90.07820.65780.64730.057*
C170.0115 (4)0.5462 (3)0.7345 (3)0.0493 (11)
H10−0.01530.49390.68660.059*
N70.0051 (3)0.5451 (2)0.8392 (3)0.0397 (8)
H11−0.02430.49630.87310.048*
C160.0534 (3)0.6349 (3)0.8788 (3)0.0322 (9)
C150.0665 (3)0.6837 (3)0.9789 (3)0.0306 (8)
N80.0546 (3)0.6485 (2)1.0734 (2)0.0412 (8)
C140.0858 (3)0.7350 (3)1.1374 (3)0.0477 (11)
H150.08680.73611.20940.057*
C130.1150 (3)0.8185 (3)1.0787 (3)0.0392 (10)
H160.13930.88521.10360.047*
C120.3600 (3)0.7001 (3)0.8784 (3)0.0429 (10)
H170.33680.63450.84960.051*
C110.4643 (3)0.7274 (3)0.9139 (3)0.0469 (11)
H180.52560.68360.91510.056*
N90.4642 (3)0.8312 (2)0.9480 (3)0.0413 (8)
H190.52040.86830.97340.050*
C100.3598 (3)0.8634 (3)0.9339 (3)0.0331 (9)
C90.3067 (3)0.9641 (3)0.9483 (3)0.0333 (9)
N100.3413 (2)1.0555 (2)0.9935 (3)0.0368 (8)
C80.2507 (3)1.1201 (3)0.9770 (3)0.0419 (10)
H230.24821.19070.99880.050*
C70.1643 (3)1.0652 (3)0.9236 (3)0.0394 (9)
H240.09391.09130.90340.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0365 (3)0.0314 (3)0.0284 (3)−0.0033 (2)0.0010 (2)0.0038 (2)
N10.0327 (16)0.0320 (16)0.0321 (19)−0.0013 (13)0.0023 (14)0.0052 (14)
N20.0354 (17)0.0352 (18)0.033 (2)−0.0026 (14)0.0028 (14)0.0041 (15)
N30.0359 (17)0.0304 (17)0.030 (2)−0.0012 (13)0.0013 (14)0.0040 (13)
N40.0396 (17)0.0262 (16)0.036 (2)−0.0012 (14)−0.0009 (15)0.0041 (14)
N50.0377 (17)0.0316 (17)0.035 (2)−0.0041 (14)0.0021 (15)0.0008 (14)
N60.0437 (18)0.0348 (17)0.030 (2)−0.0040 (14)0.0017 (15)0.0001 (14)
C50.040 (2)0.046 (2)0.035 (3)−0.0064 (18)0.0082 (19)0.0010 (19)
C60.034 (2)0.042 (2)0.041 (3)−0.0004 (17)0.0028 (19)0.0017 (19)
N120.0379 (18)0.0370 (18)0.032 (2)−0.0054 (14)0.0008 (15)0.0026 (14)
C40.0361 (19)0.0306 (19)0.025 (2)−0.0051 (16)0.0013 (16)0.0005 (16)
C30.038 (2)0.033 (2)0.031 (2)−0.0034 (17)0.0056 (18)0.0003 (17)
N110.0374 (18)0.055 (2)0.036 (2)0.0019 (15)0.0008 (16)0.0097 (16)
C20.034 (2)0.071 (3)0.051 (3)0.004 (2)0.009 (2)0.010 (2)
C10.039 (2)0.057 (3)0.037 (3)−0.0025 (19)0.0129 (19)0.006 (2)
C180.074 (3)0.046 (2)0.024 (2)−0.006 (2)0.010 (2)−0.0032 (19)
C170.072 (3)0.046 (3)0.029 (3)−0.013 (2)0.003 (2)−0.0085 (19)
N70.051 (2)0.0336 (18)0.034 (2)−0.0088 (15)0.0043 (16)−0.0024 (15)
C160.040 (2)0.033 (2)0.024 (2)−0.0040 (16)0.0040 (17)0.0020 (16)
C150.0329 (19)0.030 (2)0.028 (2)−0.0031 (15)0.0023 (16)0.0038 (16)
N80.056 (2)0.0400 (19)0.027 (2)−0.0081 (15)0.0056 (17)0.0011 (15)
C140.069 (3)0.051 (3)0.024 (2)−0.007 (2)0.010 (2)−0.004 (2)
C130.051 (2)0.037 (2)0.029 (2)−0.0044 (18)0.0035 (19)−0.0078 (18)
C120.056 (3)0.030 (2)0.041 (3)0.0033 (18)0.000 (2)0.0027 (18)
C110.050 (2)0.042 (3)0.046 (3)0.014 (2)−0.003 (2)0.006 (2)
N90.0407 (18)0.0404 (19)0.039 (2)0.0016 (15)−0.0083 (16)−0.0009 (15)
C100.033 (2)0.034 (2)0.030 (2)−0.0009 (16)−0.0031 (17)0.0073 (17)
C90.038 (2)0.031 (2)0.030 (2)−0.0019 (16)0.0032 (18)0.0034 (16)
N100.0440 (18)0.0334 (18)0.034 (2)−0.0023 (14)0.0071 (15)−0.0058 (14)
C80.053 (2)0.033 (2)0.043 (3)−0.0008 (19)0.016 (2)−0.0025 (19)
C70.043 (2)0.036 (2)0.041 (3)0.0060 (18)0.0120 (19)0.0044 (18)

Geometric parameters (Å, °)

Co1—N41.917 (3)C2—C11.348 (5)
Co1—N31.922 (3)C2—H70.9300
Co1—N61.926 (3)C1—H80.9300
Co1—N11.929 (3)C18—C171.350 (5)
Co1—N51.941 (3)C18—H90.9300
Co1—N21.944 (3)C17—N71.367 (5)
N1—C61.344 (4)C17—H100.9300
N1—C41.345 (4)N7—C161.341 (4)
N2—C31.333 (5)N7—H110.8600
N2—C11.376 (4)C16—C151.420 (5)
N3—C91.340 (4)C15—N81.326 (5)
N3—C71.365 (4)N8—C141.386 (5)
N4—C101.335 (5)C14—C131.369 (5)
N4—C121.374 (4)C14—H150.9300
N5—C151.356 (4)C13—H160.9300
N5—C131.361 (5)C12—C111.347 (5)
N6—C161.349 (5)C12—H170.9300
N6—C181.361 (5)C11—N91.373 (5)
C5—N121.373 (4)C11—H180.9300
C5—C61.378 (5)N9—C101.334 (5)
C5—H20.9300N9—H190.8600
C6—H10.9300C10—C91.443 (5)
N12—C41.336 (5)C9—N101.329 (4)
C4—C31.442 (5)N10—C81.370 (5)
C3—N111.341 (5)C8—C71.372 (5)
N11—C21.367 (5)C8—H230.9300
N11—H60.8600C7—H240.9300
N4—Co1—N382.54 (12)C1—C2—H7126.2
N4—Co1—N695.52 (13)N11—C2—H7126.2
N3—Co1—N6173.01 (13)C2—C1—N2108.6 (4)
N4—Co1—N188.88 (12)C2—C1—H8125.7
N3—Co1—N192.05 (13)N2—C1—H8125.7
N6—Co1—N194.62 (13)C17—C18—N6109.0 (4)
N4—Co1—N590.23 (13)C17—C18—H9125.5
N3—Co1—N591.61 (13)N6—C18—H9125.5
N6—Co1—N581.67 (13)C18—C17—N7107.7 (4)
N1—Co1—N5176.08 (12)C18—C17—H10126.2
N4—Co1—N2170.39 (13)N7—C17—H10126.2
N3—Co1—N294.22 (12)C16—N7—C17106.8 (3)
N6—Co1—N288.73 (13)C16—N7—H11126.6
N1—Co1—N282.18 (12)C17—N7—H11126.6
N5—Co1—N298.93 (12)N7—C16—N6110.4 (3)
C6—N1—C4105.1 (3)N7—C16—C15134.4 (3)
C6—N1—Co1138.8 (3)N6—C16—C15115.1 (3)
C4—N1—Co1116.0 (2)N8—C15—N5113.9 (3)
C3—N2—C1106.1 (3)N8—C15—C16133.1 (3)
C3—N2—Co1113.1 (2)N5—C15—C16113.0 (3)
C1—N2—Co1140.5 (3)C15—N8—C14103.5 (3)
C9—N3—C7105.2 (3)C13—C14—N8109.8 (4)
C9—N3—Co1115.2 (2)C13—C14—H15125.1
C7—N3—Co1139.5 (3)N8—C14—H15125.1
C10—N4—C12106.3 (3)N5—C13—C14107.5 (3)
C10—N4—Co1114.0 (2)N5—C13—H16126.2
C12—N4—Co1138.2 (3)C14—C13—H16126.2
C15—N5—C13105.3 (3)C11—C12—N4108.2 (3)
C15—N5—Co1114.9 (3)C11—C12—H17125.9
C13—N5—Co1138.2 (3)N4—C12—H17125.9
C16—N6—C18106.1 (3)C12—C11—N9107.9 (3)
C16—N6—Co1114.7 (3)C12—C11—H18126.1
C18—N6—Co1138.3 (3)N9—C11—H18126.1
N12—C5—C6109.9 (3)C10—N9—C11106.6 (3)
N12—C5—H2125.1C10—N9—H19126.7
C6—C5—H2125.1C11—N9—H19126.7
N1—C6—C5107.8 (3)N9—C10—N4111.0 (3)
N1—C6—H1126.1N9—C10—C9133.7 (3)
C5—C6—H1126.1N4—C10—C9115.2 (3)
C4—N12—C5102.7 (3)N10—C9—N3114.1 (3)
N12—C4—N1114.6 (3)N10—C9—C10133.3 (3)
N12—C4—C3133.6 (3)N3—C9—C10112.6 (3)
N1—C4—C3111.8 (3)C9—N10—C8103.6 (3)
N2—C3—N11110.7 (3)N10—C8—C7109.9 (3)
N2—C3—C4116.8 (3)N10—C8—H23125.0
N11—C3—C4132.5 (4)C7—C8—H23125.0
C3—N11—C2107.0 (3)N3—C7—C8107.1 (3)
C3—N11—H6126.5N3—C7—H24126.4
C2—N11—H6126.5C8—C7—H24126.4
C1—C2—N11107.6 (3)
N4—Co1—N1—C6−1.6 (4)C1—N2—C3—C4−177.6 (3)
N3—Co1—N1—C680.9 (4)Co1—N2—C3—C4−2.2 (4)
N6—Co1—N1—C6−97.0 (4)N12—C4—C3—N2−175.1 (4)
N2—Co1—N1—C6174.9 (4)N1—C4—C3—N22.5 (5)
N4—Co1—N1—C4−176.0 (3)N12—C4—C3—N117.4 (7)
N3—Co1—N1—C4−93.5 (3)N1—C4—C3—N11−174.9 (4)
N6—Co1—N1—C488.5 (3)N2—C3—N11—C2−0.7 (4)
N2—Co1—N1—C40.4 (2)C4—C3—N11—C2176.9 (4)
N3—Co1—N2—C392.5 (3)C3—N11—C2—C10.7 (5)
N6—Co1—N2—C3−93.8 (3)N11—C2—C1—N2−0.4 (5)
N1—Co1—N2—C31.0 (2)C3—N2—C1—C20.0 (5)
N5—Co1—N2—C3−175.2 (2)Co1—N2—C1—C2−173.3 (3)
N3—Co1—N2—C1−94.5 (4)C16—N6—C18—C17−1.3 (5)
N6—Co1—N2—C179.2 (4)Co1—N6—C18—C17−169.1 (3)
N1—Co1—N2—C1174.0 (4)N6—C18—C17—N70.8 (5)
N5—Co1—N2—C1−2.2 (4)C18—C17—N7—C160.1 (5)
N4—Co1—N3—C9−0.3 (3)C17—N7—C16—N6−0.9 (4)
N1—Co1—N3—C9−88.9 (3)C17—N7—C16—C15174.7 (4)
N5—Co1—N3—C989.8 (3)C18—N6—C16—N71.3 (4)
N2—Co1—N3—C9−171.2 (3)Co1—N6—C16—N7172.5 (2)
N4—Co1—N3—C7−176.5 (4)C18—N6—C16—C15−175.2 (3)
N1—Co1—N3—C794.9 (4)Co1—N6—C16—C15−4.0 (4)
N5—Co1—N3—C7−86.5 (4)C13—N5—C15—N80.8 (4)
N2—Co1—N3—C712.6 (4)Co1—N5—C15—N8169.0 (2)
N3—Co1—N4—C10−3.9 (3)C13—N5—C15—C16−177.1 (3)
N6—Co1—N4—C10−177.1 (3)Co1—N5—C15—C16−8.9 (4)
N1—Co1—N4—C1088.3 (3)N7—C16—C15—N815.6 (7)
N5—Co1—N4—C10−95.5 (3)N6—C16—C15—N8−169.0 (4)
N3—Co1—N4—C12−167.7 (4)N7—C16—C15—N5−167.0 (4)
N6—Co1—N4—C1219.0 (4)N6—C16—C15—N58.5 (5)
N1—Co1—N4—C12−75.5 (4)N5—C15—N8—C14−0.6 (4)
N5—Co1—N4—C12100.7 (4)C16—C15—N8—C14176.8 (4)
N4—Co1—N5—C15−90.1 (3)C15—N8—C14—C130.1 (5)
N3—Co1—N5—C15−172.6 (3)C15—N5—C13—C14−0.7 (4)
N6—Co1—N5—C155.5 (2)Co1—N5—C13—C14−164.5 (3)
N2—Co1—N5—C1592.8 (3)N8—C14—C13—N50.4 (5)
N4—Co1—N5—C1372.7 (4)C10—N4—C12—C111.1 (4)
N3—Co1—N5—C13−9.9 (4)Co1—N4—C12—C11165.8 (3)
N6—Co1—N5—C13168.2 (4)N4—C12—C11—N9−1.3 (5)
N2—Co1—N5—C13−104.4 (4)C12—C11—N9—C101.0 (4)
N4—Co1—N6—C1688.8 (3)C11—N9—C10—N4−0.3 (4)
N1—Co1—N6—C16178.1 (3)C11—N9—C10—C9−175.9 (4)
N5—Co1—N6—C16−0.7 (3)C12—N4—C10—N9−0.5 (4)
N2—Co1—N6—C16−99.9 (3)Co1—N4—C10—N9−169.3 (3)
N4—Co1—N6—C18−104.1 (4)C12—N4—C10—C9176.0 (3)
N1—Co1—N6—C18−14.8 (4)Co1—N4—C10—C97.1 (4)
N5—Co1—N6—C18166.5 (4)C7—N3—C9—N100.6 (4)
N2—Co1—N6—C1867.3 (4)Co1—N3—C9—N10−176.9 (2)
C4—N1—C6—C5−0.4 (4)C7—N3—C9—C10−178.5 (3)
Co1—N1—C6—C5−175.3 (3)Co1—N3—C9—C104.0 (4)
N12—C5—C6—N10.5 (4)N9—C10—C9—N10−10.7 (8)
C6—C5—N12—C4−0.3 (4)N4—C10—C9—N10173.8 (4)
C5—N12—C4—N10.1 (4)N9—C10—C9—N3168.2 (4)
C5—N12—C4—C3177.6 (4)N4—C10—C9—N3−7.3 (5)
C6—N1—C4—N120.2 (4)N3—C9—N10—C8−0.8 (4)
Co1—N1—C4—N12176.4 (2)C10—C9—N10—C8178.1 (4)
C6—N1—C4—C3−177.9 (3)C9—N10—C8—C70.7 (4)
Co1—N1—C4—C3−1.7 (4)C9—N3—C7—C8−0.1 (4)
C1—N2—C3—N110.4 (4)Co1—N3—C7—C8176.4 (3)
Co1—N2—C3—N11175.8 (2)N10—C8—C7—N3−0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H6···N12i0.861.952.808 (4)172
N7—H11···N8ii0.861.992.814 (4)159
N9—H19···N10iii0.861.952.796 (4)169

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5377).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev.198, 205–218.
  • Ye, B. H., Ding, B. B., Weng, Y. Q. & Chen, X. M. (2005). Cryst. Growth Des.5, 801–806.
  • Zhang, L.-C., Zhu, Z.-M., You, W.-S., Chang, S. & Wang, E.-B. (2008). Acta Cryst. E64, m308. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography