PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m585–m586.
Published online 2010 April 28. doi:  10.1107/S1600536810014807
PMCID: PMC2979289

Tetra­aqua­bis[4-(methyl­amino)benzoato-κO]nickel(II)

Abstract

The title complex, [Ni(C8H8NO2)2(H2O)4], is centrosymmetric with the NiII ion located on a centre of symmetry. It contains two 4-(methyl­amino)benzoate (PMAB) anions and four coordinated water mol­ecules. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by two O atoms of the PMAB anions in the axial positions. In the crystal structure, inter­molecular O—H(...)O, O—H(...)N, N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For structure–function–coordination relationships of the aryl­carboxyl­ate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981 [triangle]); Shnulin et al. (1981 [triangle]). For studies of transition-metal complexes with biochemical model systems, see: Antolini et al. (1982 [triangle]). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002 [triangle]); Amiraslanov et al. (1979 [triangle]); Hauptmann et al. (2000 [triangle]). For related structures, see: Hökelek et al. (2009a [triangle],b [triangle]); Necefoğlu et al. (2010 [triangle]); Sertçelik et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m585-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H8NO2)2(H2O)4]
  • M r = 431.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m585-efi1.jpg
  • a = 7.5466 (2) Å
  • b = 6.1811 (2) Å
  • c = 19.4802 (3) Å
  • β = 98.628 (3)°
  • V = 898.40 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 100 K
  • 0.35 × 0.25 × 0.13 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.718, T max = 0.863
  • 8475 measured reflections
  • 2242 independent reflections
  • 2085 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.061
  • S = 1.06
  • 2242 reflections
  • 145 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014807/ci5081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014807/ci5081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

supplementary crystallographic information

Comment

The structure-function-coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change, depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemical molecules frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) ligands and four coordinated water molecules. The PMAB ligands are monodentate. The four O atoms (O3, O4, and the symmetry-related atoms O3' and O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the carboxylate O atoms (O2 and O2') of the symmetry related PMAB ligands (Fig. 1 and Table 1).

The C1—O1 [1.2761 (17) Å] and C1—O2 [1.2561 (18) Å] bonds in the carboxylate groups may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), 1.2616 (17) and 1.2435 (18) Å in [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), and 1.2678 (17) and 1.2654 (17) Å in [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2010).

The Ni atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by 0.0728 (1) Å. On the other hand, O1, O2, N1 and C1 atoms are 0.0061 (11), 0.0549 (10), -0.0636 (13) and 0.0163 (13) Å away from the plane of the benzene ring A (C2—C7), respectively.

In the crystal structure, intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

Experimental

The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (50 ml) and sodium 4-(methylamino)benzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving green single crystals.

Refinement

H atoms of NH group and water molecules were located in difference maps and refined isotropically; the O–H and and H···H distances in the water molecules were restrained to 0.95 (2) Å and 1.46 (4) Å, respectively. The remaining H atoms were positioned geometrically with C–H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The primed atoms are generated by the symmetry operation (-x, 1 - y, -z).

Crystal data

[Ni(C8H8NO2)2(H2O)4]F(000) = 452
Mr = 431.06Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5176 reflections
a = 7.5466 (2) Åθ = 2.7–28.4°
b = 6.1811 (2) ŵ = 1.13 mm1
c = 19.4802 (3) ÅT = 100 K
β = 98.628 (3)°Block, green
V = 898.40 (4) Å30.35 × 0.25 × 0.13 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer2242 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→10
Tmin = 0.718, Tmax = 0.863k = −8→8
8475 measured reflectionsl = −25→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.032P)2 + 0.3955P] where P = (Fo2 + 2Fc2)/3
2242 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.50000.00000.01094 (9)
O10.12315 (14)0.95272 (17)0.08266 (5)0.0166 (2)
O2−0.00352 (13)0.63206 (17)0.09653 (5)0.0153 (2)
O30.23373 (13)0.34113 (17)0.03994 (5)0.0150 (2)
H310.327 (2)0.418 (3)0.0632 (10)0.031 (5)*
H320.220 (3)0.227 (3)0.0651 (11)0.044 (7)*
O4−0.15665 (13)0.25462 (17)0.03223 (5)0.0146 (2)
H41−0.163 (4)0.167 (4)−0.0089 (11)0.070 (9)*
H42−0.090 (3)0.178 (4)0.0679 (10)0.046 (7)*
N1−0.05050 (17)1.0577 (2)0.39282 (6)0.0155 (2)
H1−0.133 (3)0.984 (3)0.4069 (11)0.022 (5)*
C10.04946 (17)0.8156 (2)0.11841 (7)0.0130 (3)
C20.02308 (17)0.8804 (2)0.19011 (7)0.0126 (3)
C3−0.05536 (18)0.7378 (2)0.23236 (7)0.0149 (3)
H3−0.09020.60070.21590.018*
C4−0.08175 (18)0.7983 (2)0.29847 (7)0.0156 (3)
H4−0.13420.70150.32600.019*
C5−0.03016 (18)1.0039 (2)0.32435 (7)0.0137 (3)
C60.04875 (18)1.1470 (2)0.28224 (7)0.0147 (3)
H60.08401.28400.29870.018*
C70.07450 (18)1.0852 (2)0.21607 (7)0.0142 (3)
H70.12691.18170.18850.017*
C8−0.0564 (2)1.2874 (3)0.41124 (7)0.0182 (3)
H8A−0.08381.30090.45760.027*
H8B−0.14731.35890.37950.027*
H8C0.05781.35260.40870.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01233 (13)0.00929 (13)0.01089 (13)−0.00098 (9)0.00076 (9)0.00030 (8)
O10.0221 (5)0.0123 (5)0.0157 (5)−0.0032 (4)0.0035 (4)0.0001 (4)
O20.0192 (5)0.0124 (5)0.0140 (4)−0.0025 (4)0.0015 (4)−0.0013 (4)
O30.0151 (5)0.0128 (5)0.0163 (5)−0.0011 (4)−0.0001 (4)0.0012 (4)
O40.0162 (5)0.0130 (5)0.0144 (4)−0.0015 (4)0.0011 (4)0.0005 (4)
N10.0159 (6)0.0170 (6)0.0143 (5)−0.0006 (5)0.0043 (4)0.0006 (5)
C10.0118 (6)0.0125 (6)0.0138 (6)0.0023 (5)−0.0009 (4)0.0013 (5)
C20.0115 (5)0.0122 (6)0.0134 (6)0.0004 (5)−0.0003 (4)−0.0003 (5)
C30.0145 (6)0.0122 (6)0.0171 (6)−0.0014 (5)−0.0002 (5)−0.0003 (5)
C40.0159 (6)0.0151 (7)0.0160 (6)−0.0013 (5)0.0026 (5)0.0033 (5)
C50.0107 (6)0.0158 (7)0.0141 (6)0.0021 (5)0.0001 (5)0.0008 (5)
C60.0143 (6)0.0132 (6)0.0163 (6)−0.0014 (5)0.0017 (5)−0.0014 (5)
C70.0142 (6)0.0134 (7)0.0151 (6)−0.0013 (5)0.0021 (5)0.0005 (5)
C80.0196 (6)0.0185 (7)0.0172 (6)−0.0005 (6)0.0055 (5)−0.0018 (5)

Geometric parameters (Å, °)

Ni1—O22.0537 (10)C2—C31.3969 (19)
Ni1—O2i2.0537 (10)C3—H30.93
Ni1—O32.0662 (10)C4—C31.3839 (19)
Ni1—O3i2.0662 (10)C4—C51.401 (2)
Ni1—O42.0772 (10)C4—H40.93
Ni1—O4i2.0772 (10)C6—C51.3987 (19)
O1—C11.2761 (17)C6—H60.93
O2—C11.2561 (18)C7—C21.396 (2)
O3—H310.909 (16)C7—C61.3858 (19)
O3—H320.873 (17)C7—H70.93
O4—H410.964 (17)C8—N11.466 (2)
O4—H420.926 (17)C8—H8A0.96
N1—C51.4052 (18)C8—H8B0.96
N1—H10.85 (2)C8—H8C0.96
C2—C11.4948 (18)
O2—Ni1—O388.38 (4)O2—C1—O1123.87 (13)
O2i—Ni1—O391.62 (4)O2—C1—C2118.61 (12)
O2—Ni1—O2i180.00 (2)C3—C2—C1120.60 (13)
O2—Ni1—O3i91.62 (4)C7—C2—C1120.83 (12)
O2i—Ni1—O3i88.38 (4)C7—C2—C3118.57 (12)
O2—Ni1—O485.83 (4)C2—C3—H3119.6
O2i—Ni1—O494.17 (4)C4—C3—C2120.71 (13)
O2—Ni1—O4i94.17 (4)C4—C3—H3119.6
O2i—Ni1—O4i85.83 (4)C3—C4—C5120.60 (13)
O3i—Ni1—O3180.00 (5)C3—C4—H4119.7
O3—Ni1—O491.81 (4)C5—C4—H4119.7
O3i—Ni1—O488.19 (4)C4—C5—N1119.48 (13)
O3—Ni1—O4i88.19 (4)C6—C5—N1121.60 (13)
O3i—Ni1—O4i91.81 (4)C6—C5—C4118.84 (13)
O4—Ni1—O4i180.00 (5)C5—C6—H6119.9
C1—O2—Ni1128.50 (9)C7—C6—C5120.18 (13)
Ni1—O3—H31119.5 (15)C7—C6—H6119.9
Ni1—O3—H32115.3 (16)C2—C7—H7119.4
H31—O3—H32106.7 (19)C6—C7—C2121.11 (13)
Ni1—O4—H4196.8 (18)C6—C7—H7119.4
Ni1—O4—H42109.2 (15)N1—C8—H8A109.5
H42—O4—H41107 (2)N1—C8—H8B109.5
C5—N1—C8118.22 (12)N1—C8—H8C109.5
C5—N1—H1111.6 (14)H8A—C8—H8B109.5
C8—N1—H1113.0 (13)H8A—C8—H8C109.5
O1—C1—C2117.52 (12)H8B—C8—H8C109.5
O3—Ni1—O2—C198.00 (11)C7—C2—C1—O2−177.98 (12)
O3i—Ni1—O2—C1−82.00 (11)C1—C2—C3—C4−179.27 (12)
O4—Ni1—O2—C1−170.07 (12)C7—C2—C3—C40.1 (2)
O4i—Ni1—O2—C19.93 (12)C5—C4—C3—C20.0 (2)
Ni1—O2—C1—O1−2.6 (2)C3—C4—C5—N1−176.96 (13)
Ni1—O2—C1—C2176.51 (8)C3—C4—C5—C6−0.1 (2)
C8—N1—C5—C4−159.10 (13)C7—C6—C5—N1176.96 (13)
C8—N1—C5—C624.13 (19)C7—C6—C5—C40.2 (2)
C3—C2—C1—O1−179.47 (12)C6—C7—C2—C1179.34 (12)
C3—C2—C1—O21.36 (19)C6—C7—C2—C30.0 (2)
C7—C2—C1—O11.19 (19)C2—C7—C6—C5−0.1 (2)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.85 (2)2.55 (2)3.3902 (16)170 (2)
O3—H31···N1iii0.91 (2)1.97 (2)2.8780 (16)172 (2)
O3—H32···O1iv0.87 (2)1.90 (2)2.7131 (15)155 (2)
O4—H41···O1i0.96 (2)1.68 (2)2.6240 (14)165 (3)
O4—H42···O1iv0.92 (2)2.11 (2)2.8781 (15)139 (2)
C8—H8A···O3v0.962.433.2583 (18)144
C8—H8C···O1vi0.962.473.4105 (19)168

Symmetry codes: (ii) −x−1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x, y−1, z; (i) −x, −y+1, −z; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5081).

References

  • Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim.20, 1075–1080.
  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct.215, 169–172.
  • Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546. [PMC free article] [PubMed]
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362. [PMC free article] [PubMed]
  • Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography