PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1209–o1210.
Published online 2010 April 30. doi:  10.1107/S1600536810015357
PMCID: PMC2979283

N′-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate

Abstract

In the title compound, C7H12N6O·2H2O, the Z configuration of the hydrazone fragment is stabilized by an intra­molecular N—H(...)N hydrogen bond involving one of the amino groups. In the crystal structure, the hydrazonamide mol­ecules are connected via inter­molecular N—H(...)O=C hydrogen bonds, forming C(7) chains running along [010]. The chains form sheets parallel to the (An external file that holds a picture, illustration, etc.
Object name is e-66-o1209-efi1.jpg01). The chains are cross-linked by water mol­ecules to form a three-dimensional hydrogen-bonded network.

Related literature

For bioactive pyrazoles, see: Elguero et al. (2002 [triangle]); Lamberth (2007 [triangle]). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007 [triangle]); Dolzhenko et al. (2008 [triangle]). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000 [triangle]); Halcrow (2009 [triangle]). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008 [triangle], 2009 [triangle]); Caruso et al. (2009 [triangle]). For the crystal structure of N′-acetyl-2-phenyl­ethane­hydra­zo­namide, see: Ianelli et al. (2001 [triangle]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1209-scheme1.jpg

Experimental

Crystal data

  • C7H12N6O·2H2O
  • M r = 232.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1209-efi2.jpg
  • a = 7.5496 (9) Å
  • b = 7.6208 (9) Å
  • c = 11.2518 (13) Å
  • α = 102.645 (2)°
  • β = 101.440 (2)°
  • γ = 110.810 (2)°
  • V = 562.75 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 223 K
  • 0.45 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.953, T max = 0.989
  • 3963 measured reflections
  • 2548 independent reflections
  • 2174 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.141
  • S = 1.05
  • 2548 reflections
  • 183 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015357/ci5086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015357/ci5086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0020/2008).

supplementary crystallographic information

Comment

Pyrazoles have been well recognized as valuable ligands in metal-organic chemistry (Mukherjee, 2000; Halcrow, 2009). Pyrazoles also possess useful agricultural (Lamberth, 2007) and pharmacological (Elguero et al., 2002) properties and serve as synthons for other pyrazolo fused bioactive heterocycles (Schenone et al., 2007; Dolzhenko et al., 2008).

Herein, we report molecular and crystal structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide (Figs. 1 and 2). The compound can exist in two tautomeric forms, namely hydrazonamide and imidohydrazide (Fig. 3). The hydrazonamide tautomer can also exhibit (E-Z) isomerism by inversion of configuration of the hydrazono C═N linkage. We found that the compound crystallizes as a N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide tautomer. Similarly to previously reported N'-acetyl-2-phenylethanehydrazonamide (Ianelli et al., 2001), the hydrazonamide group of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide adopts (Z)-configuration. This configuration is stabilized by the intramolecular N(3)H···N5═C5 hydrogen bonding between the amino group and the hydrazone N5 atom, generating an S(6) graph-set motif (Bernstein et al., 1995). Similar NH···O═C interactions were reported for the structurally related derivatives of 5-amino-1H-pyrazole-4-carboxylic acid (Zia-ur-Rehman et al., 2008; Zia-ur-Rehman et al., 2009; Caruso et al., 2009). Planarity of the molecule is affected by slight twisting of the acetyl group [C5—N5—N6—C6 torsion angle is 170.14 (16)°].

In the crystal, the hydrazonamide molecules are arranged to form sheets parallel to the (101) (Fig. 2). In the sheets, atom N4 of one molecule is involved in a intermolecular N—H···O═C interaction with the carbonyl atom O1 of adjacent molecule making C(7) chains along the [010] direction. The water molecules further stabilize packing by formation of the intermolecular hydrogen bond network (Fig. 2 and Table 1).

Experimental

N'-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide was prepared by treatment of ethyl N-(4-cyano-1-methyl-1H-pyrazol-5-yl)acetimidate with 3 eq. of hydrazine hydrate (40%) in ethanol. Detail procedure with proposed mechanism will be reported elsewhere. Single crystals suitable for the crystallographic analysis were grown by recrystallization from ethanol, m.p. 513 K.

Refinement

All C-bound H atoms were positioned geometrically and included in the refinement in riding-motion approximation [0.95 Å for Cpyrazole–H, and 0.98 Å for methyl groups; Uiso(H) = 1.2Ueq(Cpyrazole) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N- and O-bound H atoms were located in a difference map and refined freely.

Figures

Fig. 1.
The molecular structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound, viewed along the a axis.
Fig. 3.
Hydrazonamide-imidohydrazide tautomerism in N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide

Crystal data

C7H12N6O·2H2OZ = 2
Mr = 232.26F(000) = 248
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Melting point: 513 K
a = 7.5496 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6208 (9) ÅCell parameters from 1515 reflections
c = 11.2518 (13) Åθ = 3.0–27.5°
α = 102.645 (2)°µ = 0.11 mm1
β = 101.440 (2)°T = 223 K
γ = 110.810 (2)°Rod, colourless
V = 562.75 (11) Å30.45 × 0.12 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer2548 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→9
Tmin = 0.953, Tmax = 0.989k = −9→9
3963 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1961P] where P = (Fo2 + 2Fc2)/3
2548 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3615 (2)0.89463 (19)0.14623 (12)0.0421 (4)
N10.7337 (2)0.3950 (2)0.48625 (14)0.0306 (4)
N20.7791 (2)0.5933 (2)0.51428 (13)0.0264 (3)
N30.7066 (3)0.8221 (2)0.42298 (16)0.0302 (4)
H310.748 (3)0.907 (3)0.495 (2)0.036 (6)*
H320.613 (3)0.821 (3)0.365 (2)0.039 (6)*
N40.3308 (2)0.2471 (2)0.11287 (15)0.0297 (4)
H410.350 (3)0.158 (3)0.132 (2)0.032 (5)*
H420.260 (3)0.223 (3)0.034 (2)0.040 (6)*
N50.4378 (2)0.5945 (2)0.18078 (13)0.0294 (4)
N60.3198 (2)0.5816 (2)0.06398 (13)0.0267 (3)
H6N0.269 (3)0.479 (3)0.000 (2)0.037 (6)*
C10.6808 (2)0.6344 (2)0.41838 (15)0.0239 (4)
C20.5664 (2)0.4541 (2)0.32050 (15)0.0236 (4)
C30.6068 (3)0.3143 (3)0.37018 (16)0.0272 (4)
H30.54960.17800.32560.033*
C40.9204 (3)0.7328 (3)0.63443 (17)0.0359 (4)
H4A1.01400.84430.61880.054*
H4C0.99160.66870.67660.054*
H4D0.85040.77910.68860.054*
C50.4374 (2)0.4304 (2)0.19753 (15)0.0225 (3)
C60.2965 (3)0.7431 (3)0.05365 (16)0.0278 (4)
C70.1873 (3)0.7318 (3)−0.07661 (17)0.0354 (4)
H7A0.07290.7603−0.07210.053*
H7B0.14310.6000−0.13530.053*
H7C0.27510.8278−0.10660.053*
O1W0.8443 (2)0.7733 (2)0.15574 (13)0.0380 (4)
H1W0.752 (5)0.757 (4)0.186 (3)0.069 (9)*
H2W0.949 (5)0.780 (4)0.213 (3)0.065 (8)*
O2W0.1806 (2)0.8169 (2)0.34309 (14)0.0393 (4)
H3W0.253 (4)0.812 (4)0.294 (3)0.064 (9)*
H4W0.189 (4)0.731 (4)0.381 (3)0.060 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0739 (10)0.0235 (7)0.0262 (7)0.0259 (7)0.0028 (7)0.0046 (5)
N10.0382 (8)0.0292 (8)0.0260 (8)0.0170 (7)0.0052 (6)0.0107 (6)
N20.0311 (7)0.0255 (7)0.0195 (7)0.0118 (6)0.0023 (6)0.0060 (6)
N30.0413 (9)0.0219 (7)0.0218 (8)0.0130 (7)0.0021 (7)0.0032 (6)
N40.0436 (9)0.0173 (7)0.0228 (8)0.0136 (6)−0.0018 (6)0.0053 (6)
N50.0403 (8)0.0219 (7)0.0197 (7)0.0141 (6)−0.0034 (6)0.0043 (6)
N60.0375 (8)0.0195 (7)0.0174 (7)0.0128 (6)−0.0022 (6)0.0029 (6)
C10.0268 (8)0.0265 (8)0.0186 (7)0.0119 (7)0.0058 (6)0.0071 (6)
C20.0286 (8)0.0225 (8)0.0199 (8)0.0119 (6)0.0046 (6)0.0072 (6)
C30.0342 (9)0.0228 (8)0.0241 (8)0.0138 (7)0.0037 (7)0.0076 (6)
C40.0374 (10)0.0406 (11)0.0206 (8)0.0142 (8)−0.0003 (7)0.0043 (8)
C50.0274 (8)0.0211 (8)0.0188 (7)0.0114 (6)0.0045 (6)0.0061 (6)
C60.0353 (9)0.0264 (8)0.0217 (8)0.0143 (7)0.0048 (7)0.0085 (7)
C70.0447 (11)0.0370 (10)0.0273 (9)0.0227 (9)0.0026 (8)0.0136 (8)
O1W0.0406 (8)0.0395 (8)0.0236 (7)0.0125 (6)0.0021 (6)0.0044 (6)
O2W0.0518 (9)0.0414 (8)0.0299 (7)0.0253 (7)0.0082 (7)0.0145 (6)

Geometric parameters (Å, °)

O1—C61.236 (2)C1—C21.401 (2)
N1—C31.317 (2)C2—C31.402 (2)
N1—N21.372 (2)C2—C51.459 (2)
N2—C11.344 (2)C3—H30.94
N2—C41.445 (2)C4—H4A0.97
N3—C11.362 (2)C4—H4C0.97
N3—H310.83 (2)C4—H4D0.97
N3—H320.86 (2)C6—C71.500 (2)
N4—C51.350 (2)C7—H7A0.97
N4—H410.81 (2)C7—H7B0.97
N4—H420.88 (2)C7—H7C0.97
N5—C51.303 (2)O1W—H1W0.81 (3)
N5—N61.3953 (19)O1W—H2W0.89 (3)
N6—C61.330 (2)O2W—H3W0.86 (3)
N6—H6N0.84 (2)O2W—H4W0.87 (3)
C3—N1—N2104.63 (14)C2—C3—H3123.7
C1—N2—N1112.10 (14)N2—C4—H4A109.5
C1—N2—C4127.04 (15)N2—C4—H4C109.5
N1—N2—C4120.85 (14)H4A—C4—H4C109.5
C1—N3—H31117.5 (15)N2—C4—H4D109.5
C1—N3—H32110.8 (16)H4A—C4—H4D109.5
H31—N3—H32119 (2)H4C—C4—H4D109.5
C5—N4—H41116.7 (15)N5—C5—N4126.14 (15)
C5—N4—H42123.9 (15)N5—C5—C2114.92 (14)
H41—N4—H42118 (2)N4—C5—C2118.95 (15)
C5—N5—N6117.52 (14)O1—C6—N6121.90 (15)
C6—N6—N5117.50 (14)O1—C6—C7121.68 (16)
C6—N6—H6N119.6 (15)N6—C6—C7116.42 (15)
N5—N6—H6N122.8 (15)C6—C7—H7A109.5
N2—C1—N3122.61 (15)C6—C7—H7B109.5
N2—C1—C2106.59 (14)H7A—C7—H7B109.5
N3—C1—C2130.72 (15)C6—C7—H7C109.5
C1—C2—C3104.15 (14)H7A—C7—H7C109.5
C1—C2—C5125.02 (15)H7B—C7—H7C109.5
C3—C2—C5130.83 (15)H1W—O1W—H2W110 (3)
N1—C3—C2112.53 (15)H3W—O2W—H4W103 (3)
N1—C3—H3123.7
C3—N1—N2—C10.66 (19)N2—N1—C3—C2−0.1 (2)
C3—N1—N2—C4−178.36 (16)C1—C2—C3—N1−0.5 (2)
C5—N5—N6—C6170.14 (16)C5—C2—C3—N1179.83 (17)
N1—N2—C1—N3−177.99 (15)N6—N5—C5—N4−1.0 (3)
C4—N2—C1—N31.0 (3)N6—N5—C5—C2178.89 (14)
N1—N2—C1—C2−0.95 (19)C1—C2—C5—N51.9 (2)
C4—N2—C1—C2178.00 (16)C3—C2—C5—N5−178.43 (17)
N2—C1—C2—C30.82 (18)C1—C2—C5—N4−178.18 (16)
N3—C1—C2—C3177.53 (18)C3—C2—C5—N41.5 (3)
N2—C1—C2—C5−179.44 (15)N5—N6—C6—O1−6.2 (3)
N3—C1—C2—C5−2.7 (3)N5—N6—C6—C7173.75 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H4W···N1i0.87 (3)2.04 (3)2.884 (2)162 (3)
O2W—H3W···O10.86 (3)2.11 (3)2.885 (2)150 (3)
O1W—H2W···O2Wii0.89 (3)1.93 (3)2.824 (2)175 (3)
O1W—H1W···N50.81 (3)2.24 (3)2.982 (2)153 (3)
N6—H6N···O1Wiii0.84 (2)2.07 (2)2.905 (2)177 (2)
N4—H42···O1Wiii0.88 (2)2.14 (3)2.995 (2)165 (2)
N4—H41···O1iv0.81 (2)2.08 (2)2.874 (2)169 (2)
N3—H32···N50.86 (2)2.18 (2)2.791 (2)128 (2)
N3—H31···O2Wv0.83 (2)2.27 (2)3.082 (2)163 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x, y−1, z; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5086).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  • Caruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173. [PMC free article] [PubMed]
  • Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575–1622.
  • Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets Heterocycl. Syst.6, 52–98.
  • Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. [PubMed]
  • Ianelli, S., Pelosi, G., Ponticelli, G., Cocco, M. T. & Onnis, V. (2001). J. Chem. Crystallogr 31, 149–154.
  • Lamberth, C. (2007). Heterocycles, 71, 1467–1502.
  • Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
  • Schenone, S., Radi, M. & Botta, M. (2007). Targets Heterocycl. Syst.11, 44–69.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313. [PMC free article] [PubMed]
  • Zia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275–o276. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography