PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m512.
Published online 2010 April 10. doi:  10.1107/S1600536810012572
PMCID: PMC2979279

(4,4′-Dimethyl-2,2′-bipyridine-κ2 N,N′)(dimethyl sulfoxide-κO)diiodidocadmium(II)

Abstract

In the title compound, [CdI2(C12H12N2)(C2H6OS)], the CdII cation is coordinated by two N atoms from a dimethyl­bipyridine ligand, one O atom from a dimethyl sulfoxide mol­ecule and two I anions in a distorted trigonal–bipyramidal geometry. Intra­molecular C—H(...)O hydrogen bonding and inter­molecular π–π stacking between parallel pyridine rings [centroid–centroid distance = 3.658 (3) Å] are present in the crystal structure.

Related literature

For metal complexes of 4,4′-dimethyl-2,2′-bipyridine, see: Ahmadi et al. (2008 [triangle]); Amani et al. (2009 [triangle]); Kalateh et al. (2008 [triangle]); Bellusci et al. (2008 [triangle]); Hojjat Kashani et al. (2008 [triangle]); Sakamoto et al. (2004 [triangle]); Sofetis et al. (2006 [triangle]); Willett et al. (2001 [triangle]); Yoshikawa et al. (2003 [triangle]); Yousefi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m512-scheme1.jpg

Experimental

Crystal data

  • [CdI2(C12H12N2)(C2H6OS)]
  • M r = 628.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m512-efi1.jpg
  • a = 8.729 (1) Å
  • b = 15.5247 (18) Å
  • c = 15.1354 (17) Å
  • β = 102.620 (9)°
  • V = 2001.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.28 mm−1
  • T = 298 K
  • 0.49 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.002, T max = 0.055
  • 15568 measured reflections
  • 5360 independent reflections
  • 4625 reflections with I > 2σ(I)
  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.172
  • S = 1.16
  • 5360 reflections
  • 195 parameters
  • H-atom parameters constrained
  • Δρmax = 2.10 e Å−3
  • Δρmin = −2.23 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012572/xu2734sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012572/xu2734Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001) and iridium (Yoshikawa et al., 2003). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted square-pyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two I atoms. The Cd—I and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) 2-X,2-Y,2-Z and (ii) 1-X,2-Y,2-Z , where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.657 (3) and 3.775 (3) Å.

Experimental

For the preparation of the title compound a solution of 4,4'-dimethyl-2,2'-bipyridine (0.15 g, 0.80 mmol) in methanol (10 ml) was added to a solution of CdI2 (0.29 g, 0.80 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.36 g, 71.6%).

Refinement

All H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.96 Å (methyl) and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(c).

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Unit-cell packing diagram for (I).

Crystal data

[CdI2(C12H12N2)(C2H6OS)]F(000) = 1176
Mr = 628.58Dx = 2.086 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 887 reflections
a = 8.729 (1) Åθ = 1.9–29.3°
b = 15.5247 (18) ŵ = 4.28 mm1
c = 15.1354 (17) ÅT = 298 K
β = 102.620 (9)°Block, colorless
V = 2001.5 (4) Å30.49 × 0.30 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer5360 independent reflections
Radiation source: fine-focus sealed tube4625 reflections with I > 2σ(I)
graphiteRint = 0.082
[var phi] and ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −11→11
Tmin = 0.002, Tmax = 0.055k = −21→20
15568 measured reflectionsl = −20→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.172w = 1/[σ2(Fo2) + (0.0903P)2 + 1.8883P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.015
5360 reflectionsΔρmax = 2.10 e Å3
195 parametersΔρmin = −2.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0171 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9509 (8)0.7934 (4)0.8795 (4)0.0575 (14)
H10.95290.77430.82160.069*
C21.0322 (8)0.7476 (4)0.9527 (5)0.0596 (14)
H21.08970.69910.94390.071*
C31.0280 (8)0.7741 (4)1.0397 (4)0.0584 (14)
C41.1139 (11)0.7258 (6)1.1206 (6)0.082 (2)
H4C1.13220.76301.17250.098*
H4B1.21260.70601.11010.098*
H4A1.05220.67731.13130.098*
C50.9435 (7)0.8469 (4)1.0476 (4)0.0499 (12)
H50.93830.86661.10490.060*
C60.8651 (5)0.8918 (3)0.9714 (3)0.0385 (9)
C70.7726 (5)0.9709 (3)0.9790 (3)0.0385 (9)
C80.7692 (6)1.0072 (4)1.0620 (3)0.0453 (10)
H80.82620.98251.11510.054*
C90.6794 (7)1.0810 (4)1.0656 (4)0.0488 (11)
C100.6735 (10)1.1201 (5)1.1561 (4)0.0679 (17)
H10A0.71881.17671.16030.081*
H10B0.73151.08461.20370.081*
H10C0.56631.12391.16170.081*
C110.5989 (8)1.1146 (4)0.9857 (4)0.0568 (13)
H110.53721.16350.98570.068*
C120.6086 (8)1.0764 (4)0.9054 (4)0.0545 (13)
H120.55461.10130.85170.065*
C130.411 (3)1.1614 (9)0.6212 (9)0.189 (11)
H13A0.36521.16750.67300.227*
H13B0.33651.17890.56770.227*
H13C0.50291.19710.62870.227*
C140.2811 (10)1.0103 (11)0.5584 (6)0.110 (4)
H14C0.29420.95100.54370.132*
H14B0.23831.04180.50400.132*
H14A0.21081.01410.59890.132*
N10.8687 (5)0.8647 (3)0.8888 (3)0.0471 (9)
N20.6925 (5)1.0048 (3)0.9006 (3)0.0439 (9)
O10.4994 (6)1.0216 (4)0.7072 (3)0.0664 (12)
Cd10.72703 (5)0.94561 (3)0.76515 (2)0.04529 (16)
I10.93442 (5)1.04931 (3)0.70096 (3)0.06676 (19)
I20.63195 (7)0.80423 (3)0.65550 (3)0.0758 (2)
S10.46338 (19)1.05399 (12)0.61041 (10)0.0574 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.068 (3)0.057 (3)0.046 (3)0.009 (3)0.008 (2)−0.013 (2)
C20.066 (3)0.056 (3)0.055 (3)0.014 (3)0.010 (3)−0.008 (3)
C30.062 (3)0.055 (3)0.056 (3)0.010 (3)0.007 (3)0.003 (3)
C40.094 (5)0.082 (5)0.063 (4)0.032 (4)0.006 (4)0.008 (4)
C50.055 (3)0.054 (3)0.038 (2)0.008 (2)0.005 (2)0.000 (2)
C60.038 (2)0.042 (2)0.036 (2)−0.0003 (16)0.0086 (16)0.0007 (18)
C70.037 (2)0.045 (2)0.033 (2)−0.0025 (17)0.0059 (16)−0.0002 (18)
C80.054 (3)0.050 (3)0.031 (2)0.003 (2)0.0069 (18)−0.0019 (19)
C90.055 (3)0.048 (3)0.045 (3)0.002 (2)0.013 (2)−0.003 (2)
C100.090 (5)0.070 (4)0.046 (3)0.011 (4)0.019 (3)−0.009 (3)
C110.068 (3)0.051 (3)0.050 (3)0.013 (3)0.010 (3)−0.004 (2)
C120.069 (3)0.055 (3)0.036 (2)0.014 (3)0.002 (2)0.002 (2)
C130.38 (3)0.084 (8)0.079 (7)0.051 (13)−0.012 (12)0.009 (6)
C140.061 (4)0.200 (13)0.063 (5)−0.027 (6)0.001 (4)−0.007 (7)
N10.050 (2)0.053 (2)0.038 (2)−0.0004 (18)0.0086 (17)−0.0057 (18)
N20.048 (2)0.048 (2)0.0333 (18)0.0019 (17)0.0039 (16)−0.0008 (17)
O10.059 (2)0.095 (4)0.042 (2)0.014 (2)0.0060 (18)0.010 (2)
Cd10.0492 (2)0.0532 (3)0.0323 (2)−0.00441 (14)0.00650 (14)−0.00210 (14)
I10.0659 (3)0.0866 (4)0.0452 (2)−0.0248 (2)0.00653 (18)0.01257 (19)
I20.0940 (4)0.0675 (3)0.0581 (3)−0.0181 (2)−0.0001 (2)−0.0193 (2)
S10.0532 (7)0.0810 (11)0.0364 (6)0.0013 (6)0.0061 (5)−0.0011 (6)

Geometric parameters (Å, °)

C1—N11.342 (8)C10—H10B0.9600
C1—C21.376 (9)C10—H10C0.9600
C1—H10.9300C11—C121.373 (8)
C2—C31.387 (9)C11—H110.9300
C2—H20.9300C12—N21.342 (8)
C3—C51.368 (8)C12—H120.9300
C3—C41.491 (9)C13—S11.746 (13)
C4—H4C0.9600C13—H13A0.9600
C4—H4B0.9600C13—H13B0.9600
C4—H4A0.9600C13—H13C0.9600
C5—C61.393 (7)C14—S11.751 (9)
C5—H50.9300C14—H14C0.9600
C6—N11.327 (6)C14—H14B0.9600
C6—C71.487 (7)C14—H14A0.9600
C7—N21.346 (6)Cd1—N12.366 (5)
C7—C81.384 (7)Cd1—N22.326 (4)
C8—C91.396 (8)O1—S11.515 (5)
C8—H80.9300Cd1—O12.313 (5)
C9—C111.363 (9)Cd1—I12.7535 (6)
C9—C101.508 (8)Cd1—I22.7674 (6)
C10—H10A0.9600
N1—C1—C2122.4 (6)C9—C11—H11120.0
N1—C1—H1118.8C12—C11—H11120.0
C2—C1—H1118.8N2—C12—C11123.1 (5)
C1—C2—C3119.6 (6)N2—C12—H12118.5
C1—C2—H2120.2C11—C12—H12118.5
C3—C2—H2120.2S1—C13—H13A109.5
C5—C3—C2117.0 (6)S1—C13—H13B109.5
C5—C3—C4121.8 (6)H13A—C13—H13B109.5
C2—C3—C4121.1 (6)S1—C13—H13C109.5
C3—C4—H4C109.5H13A—C13—H13C109.5
C3—C4—H4B109.5H13B—C13—H13C109.5
H4C—C4—H4B109.5S1—C14—H14C109.5
C3—C4—H4A109.5S1—C14—H14B109.5
H4C—C4—H4A109.5H14C—C14—H14B109.5
H4B—C4—H4A109.5S1—C14—H14A109.5
C3—C5—C6121.2 (5)H14C—C14—H14A109.5
C3—C5—H5119.4H14B—C14—H14A109.5
C6—C5—H5119.4C6—N1—C1118.9 (5)
N1—C6—C5120.9 (5)C6—N1—Cd1117.5 (4)
N1—C6—C7117.4 (4)C1—N1—Cd1123.6 (4)
C5—C6—C7121.8 (4)C12—N2—C7117.5 (5)
N2—C7—C8122.1 (5)C12—N2—Cd1123.5 (3)
N2—C7—C6116.2 (4)C7—N2—Cd1118.7 (3)
C8—C7—C6121.7 (4)S1—O1—Cd1121.0 (3)
C7—C8—C9119.6 (5)O1—Cd1—N282.36 (16)
C7—C8—H8120.2O1—Cd1—N1145.92 (16)
C9—C8—H8120.2N2—Cd1—N170.02 (16)
C11—C9—C8117.7 (5)O1—Cd1—I198.31 (14)
C11—C9—C10122.5 (6)N2—Cd1—I1107.57 (12)
C8—C9—C10119.8 (5)N1—Cd1—I1108.61 (12)
C9—C10—H10A109.5O1—Cd1—I293.25 (14)
C9—C10—H10B109.5N2—Cd1—I2139.68 (12)
H10A—C10—H10B109.5N1—Cd1—I295.15 (12)
C9—C10—H10C109.5I1—Cd1—I2112.72 (2)
H10A—C10—H10C109.5O1—S1—C13103.3 (5)
H10B—C10—H10C109.5O1—S1—C14106.4 (5)
C9—C11—C12120.0 (6)C13—S1—C14100.5 (9)
N1—C1—C2—C31.3 (11)C8—C7—N2—C120.5 (8)
C1—C2—C3—C5−1.2 (11)C6—C7—N2—C12−179.7 (5)
C1—C2—C3—C4179.6 (8)C8—C7—N2—Cd1174.2 (4)
C2—C3—C5—C60.2 (10)C6—C7—N2—Cd1−6.0 (6)
C4—C3—C5—C6179.4 (7)S1—O1—Cd1—N2152.1 (4)
C3—C5—C6—N10.8 (9)S1—O1—Cd1—N1−172.4 (3)
C3—C5—C6—C7179.9 (6)S1—O1—Cd1—I145.3 (4)
N1—C6—C7—N24.0 (7)S1—O1—Cd1—I2−68.2 (4)
C5—C6—C7—N2−175.1 (5)C12—N2—Cd1—O1−22.7 (5)
N1—C6—C7—C8−176.1 (5)C7—N2—Cd1—O1164.0 (4)
C5—C6—C7—C84.8 (8)C12—N2—Cd1—N1177.6 (5)
N2—C7—C8—C90.4 (8)C7—N2—Cd1—N14.3 (4)
C6—C7—C8—C9−179.4 (5)C12—N2—Cd1—I173.7 (5)
C7—C8—C9—C11−0.4 (9)C7—N2—Cd1—I1−99.6 (4)
C7—C8—C9—C10179.2 (6)C12—N2—Cd1—I2−108.7 (5)
C8—C9—C11—C12−0.5 (10)C7—N2—Cd1—I278.0 (4)
C10—C9—C11—C12180.0 (7)C6—N1—Cd1—O1−39.9 (6)
C9—C11—C12—N21.5 (11)C1—N1—Cd1—O1139.8 (5)
C5—C6—N1—C1−0.8 (8)C6—N1—Cd1—N2−2.0 (4)
C7—C6—N1—C1−179.9 (5)C1—N1—Cd1—N2177.7 (5)
C5—C6—N1—Cd1179.0 (4)C6—N1—Cd1—I1100.5 (4)
C7—C6—N1—Cd1−0.2 (6)C1—N1—Cd1—I1−79.8 (5)
C2—C1—N1—C6−0.3 (10)C6—N1—Cd1—I2−143.5 (4)
C2—C1—N1—Cd1−180.0 (5)C1—N1—Cd1—I236.2 (5)
C11—C12—N2—C7−1.4 (10)Cd1—O1—S1—C13−131.6 (9)
C11—C12—N2—Cd1−174.8 (5)Cd1—O1—S1—C14123.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.473.063 (8)122

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2734).

References

  • Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. [PMC free article] [PubMed]
  • Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem.62, 1939–1950.
  • Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des.8, 3114–3122.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. [PMC free article] [PubMed]
  • Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. [PMC free article] [PubMed]
  • Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.
  • Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem.40, 4342–4352. [PubMed]
  • Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.
  • Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography