PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1077.
Published online 2010 April 14. doi:  10.1107/S1600536810012444
PMCID: PMC2979278

9-Benzyl-9H-carbazole

Abstract

The asymmetric unit of the title compound, C19H15N, contains two crystallographically independent mol­ecules. In both mol­ecules, the planar carbazole moieties [maximum deviations = 0.037 (4) and 0.042 (3) Å] are oriented with respect to the adjacent benzene rings, at dihedral angles of 85.29 (8) and 89.89 (7)°, respectively. In the crystal structure, weak C—H(...)π inter­actions are observed involving the carbazole rings.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Phillipson & Zenk (1980 [triangle]); Saxton (1983 [triangle]); Abraham (1975 [triangle]). For related structures, see: Hökelek et al. (1994 [triangle], 1998 [triangle], 1999 [triangle], 2004 [triangle], 2006 [triangle]); Patır et al. (1997 [triangle]); Hökelek & Patır (1999 [triangle], 2002 [triangle]); Çaylak et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1077-scheme1.jpg

Experimental

Crystal data

  • C19H15N
  • M r = 257.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1077-efi1.jpg
  • a = 14.9305 (4) Å
  • b = 5.5612 (2) Å
  • c = 32.7916 (8) Å
  • β = 94.518 (3)°
  • V = 2714.27 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.27 × 0.15 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.981, T max = 0.990
  • 24870 measured reflections
  • 6816 independent reflections
  • 3384 reflections with I > 2σ(I)
  • R int = 0.103

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.210
  • S = 1.03
  • 6816 reflections
  • 474 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012444/xu2745sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012444/xu2745Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

supplementary crystallographic information

Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10 b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3-d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a benzyl group. Its asymmetric unit, (Fig. 1), contains two crystallographically independent molecules, where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a), D (C11—C16) and A' (C1'-C4'/C4a'/C9a'), B' (C4a'/C5a'/ C8a'/N9'/C9a'), C' (C5a'/C5'-C8'/C8a'), D' (C11'-C16') are planar. The carbazole skeletons, containing the rings A, B, C and A', B', C' are also nearly coplanar [with a maximum deviations of 0.037 (4) and 0.042 (3) Å for atoms C2 and C7', respectively] with dihedral angles of A/B = 1.28 (10), A/C = 1.57 (9), B/C = 0.32 (7) ° and A'/B' = 0.94 (10), A'/C' = 2.37 (10), B'/C' = 1.72 (11) °. Rings D and D' are oriented with respect to the planar carbazole skeletons at dihedral angles of 85.29 (8) and 89.89 (7) °, respectively. Atoms C10 and C10' displaced by -0.109 (3), -0.005 (4) Å and -0.016 (3), -0.098 (3) Å from the planes of the corresponding carbazole skeletons and benzene rings, respectively.

In the crystal structure, three weak C—H···π interactions (Table 1) involving the carbazole rings are observed.

Experimental

For the preparation of the title compound, (I), sodium hydride (2.38 g, 59.85 mmol) was added to a solution of carbazole (5.00 g, 29.92 mmol) in dry tetrahydrofuran (200 ml) in several portions, and stirred at room temperature for 1 h under argon atmosphere. Then, benzylchloride (5.68 g, 44.88 mmol) was added and stirred at 343 K for 6 h. The reaction mixture was cooled in an ice bath, and hydrochloric acid (10%, 200 ml) was added. After the extraction with dichloromethane (300 ml), the organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated under reduced pressure. The residue was purified by column chromatograpy using silica gel and dichloromethane-petroleum ether (1:1), and the product was recrystallized from diethyl ether and cyclohexane mixture (1:1) (yield; 4.00 g, 80%, m.p. 388 K).

Refinement

H3 and H7' atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H atoms were located in difference synthesis and refined isotropically.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C19H15NF(000) = 1088
Mr = 257.32Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1669 reflections
a = 14.9305 (4) Åθ = 2.5–22.9°
b = 5.5612 (2) ŵ = 0.07 mm1
c = 32.7916 (8) ÅT = 100 K
β = 94.518 (3)°Block, colorless
V = 2714.27 (14) Å30.27 × 0.15 × 0.14 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer6816 independent reflections
Radiation source: fine-focus sealed tube3384 reflections with I > 2σ(I)
graphiteRint = 0.103
[var phi] and ω scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −19→18
Tmin = 0.981, Tmax = 0.990k = −7→7
24870 measured reflectionsl = −42→43

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.210w = 1/[σ2(Fo2) + (0.0918P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6816 reflectionsΔρmax = 0.27 e Å3
474 parametersΔρmin = −0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5696 (2)0.6160 (7)0.83884 (11)0.0399 (9)
H10.536 (2)0.451 (6)0.8446 (9)0.042 (9)*
C20.5654 (2)0.7192 (8)0.80036 (11)0.0495 (10)
H20.524 (2)0.643 (6)0.7769 (10)0.040 (9)*
C30.6133 (2)0.9241 (8)0.79216 (10)0.0486 (10)
H30.60770.98900.76590.058*
C40.6692 (2)1.0341 (7)0.82209 (10)0.0364 (8)
H40.702 (2)1.169 (6)0.8155 (9)0.030 (9)*
C4A0.67613 (19)0.9336 (6)0.86118 (9)0.0286 (7)
C50.7898 (2)1.1740 (6)0.91002 (10)0.0286 (7)
H50.807 (2)1.303 (6)0.8898 (10)0.052 (10)*
C5A0.72814 (19)0.9919 (5)0.89881 (8)0.0244 (6)
C60.8284 (2)1.1795 (6)0.94938 (10)0.0308 (7)
H60.870 (2)1.308 (6)0.9577 (9)0.045 (10)*
C70.8064 (2)1.0064 (6)0.97798 (10)0.0294 (7)
H70.836 (2)1.010 (6)1.0055 (10)0.037 (9)*
C80.7450 (2)0.8268 (6)0.96804 (9)0.0284 (7)
H80.727 (2)0.696 (6)0.9883 (10)0.045 (9)*
C8A0.70640 (19)0.8208 (5)0.92781 (9)0.0243 (6)
N90.64413 (16)0.6597 (4)0.90964 (7)0.0263 (6)
C9A0.62622 (19)0.7261 (5)0.86924 (9)0.0274 (7)
C100.5991 (2)0.4654 (6)0.92981 (11)0.0314 (7)
H10A0.604 (2)0.313 (6)0.9142 (9)0.036 (9)*
H10B0.632 (2)0.433 (5)0.9553 (9)0.031 (9)*
C110.50251 (19)0.5224 (5)0.93644 (9)0.0260 (7)
C120.4798 (2)0.7304 (6)0.95693 (10)0.0335 (8)
H120.527 (2)0.852 (6)0.9672 (10)0.048 (10)*
C130.3908 (2)0.7795 (6)0.96297 (10)0.0348 (8)
H130.375 (2)0.931 (6)0.9762 (10)0.052 (10)*
C140.3239 (2)0.6231 (6)0.94863 (9)0.0311 (7)
H140.263 (3)0.675 (6)0.9533 (10)0.054 (11)*
C150.3458 (2)0.4166 (6)0.92833 (10)0.0337 (8)
H150.296 (2)0.295 (6)0.9180 (9)0.038 (9)*
C160.4348 (2)0.3666 (6)0.92232 (10)0.0305 (7)
H160.4532 (19)0.217 (5)0.9088 (8)0.027 (8)*
C1'0.9099 (2)0.8115 (6)0.57706 (9)0.0291 (7)
H1'0.865 (2)0.673 (5)0.5719 (8)0.032 (8)*
C2'0.9229 (2)0.9787 (6)0.54711 (10)0.0333 (8)
H2'0.883 (2)0.951 (5)0.5217 (9)0.029 (8)*
C3'0.9879 (2)1.1600 (6)0.55305 (10)0.0345 (8)
H3'0.998 (2)1.271 (6)0.5318 (9)0.035 (9)*
C4'1.0415 (2)1.1763 (6)0.58923 (10)0.0294 (7)
H4'1.085 (3)1.310 (7)0.5918 (11)0.063 (12)*
C4A'1.02988 (19)1.0096 (5)0.61992 (9)0.0258 (7)
C5'1.1437 (2)1.0841 (6)0.68366 (10)0.0325 (8)
H5'1.177 (2)1.222 (6)0.6724 (9)0.041 (9)*
C5A'1.07331 (19)0.9688 (5)0.66042 (9)0.0258 (7)
C6'1.1713 (2)0.9928 (7)0.72151 (10)0.0399 (8)
H6'1.223 (3)1.067 (7)0.7361 (11)0.061 (11)*
C7'1.1302 (2)0.7899 (6)0.73662 (9)0.0374 (8)
H7'1.15090.73060.76220.045*
C8'1.0594 (2)0.6735 (6)0.71486 (9)0.0305 (7)
H8'1.028 (2)0.519 (6)0.7270 (9)0.043 (9)*
C8A'1.03215 (19)0.7642 (5)0.67661 (8)0.0249 (7)
N9'0.96646 (16)0.6806 (4)0.64747 (7)0.0255 (6)
C9A'0.96460 (19)0.8272 (5)0.61347 (9)0.0258 (7)
C10'0.9071 (2)0.4776 (5)0.65181 (10)0.0267 (7)
H10C0.910 (2)0.373 (6)0.6277 (10)0.042 (10)*
H10D0.932 (2)0.372 (5)0.6747 (9)0.033 (9)*
C11'0.81229 (19)0.5454 (5)0.66032 (8)0.0241 (6)
C12'0.7931 (2)0.7589 (6)0.67972 (9)0.0314 (7)
H12'0.847 (2)0.884 (6)0.6895 (9)0.047 (10)*
C13'0.7052 (2)0.8047 (7)0.68913 (11)0.0401 (9)
H13'0.690 (2)0.951 (6)0.7018 (9)0.042 (10)*
C14'0.6376 (2)0.6429 (7)0.67937 (12)0.0481 (10)
H14'0.576 (3)0.680 (7)0.6901 (12)0.075 (13)*
C15'0.6564 (2)0.4339 (7)0.65933 (12)0.0462 (10)
H15'0.605 (3)0.327 (6)0.6506 (10)0.054 (11)*
C16'0.7434 (2)0.3849 (6)0.64961 (10)0.0350 (8)
H16'0.758 (2)0.242 (6)0.6364 (10)0.041 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0220 (17)0.053 (2)0.045 (2)−0.0002 (16)0.0017 (14)−0.0173 (18)
C20.029 (2)0.085 (3)0.034 (2)0.009 (2)−0.0012 (16)−0.015 (2)
C30.031 (2)0.086 (3)0.0284 (18)0.015 (2)0.0033 (15)0.0019 (19)
C40.0239 (18)0.055 (2)0.0316 (19)0.0087 (17)0.0072 (14)0.0043 (17)
C4A0.0183 (15)0.0393 (18)0.0288 (17)0.0061 (14)0.0056 (12)−0.0019 (14)
C50.0219 (16)0.0278 (16)0.0372 (19)0.0003 (13)0.0090 (13)−0.0011 (14)
C5A0.0196 (15)0.0290 (15)0.0254 (15)0.0057 (13)0.0075 (12)0.0015 (13)
C60.0225 (17)0.0326 (17)0.0379 (19)−0.0054 (14)0.0062 (14)−0.0049 (15)
C70.0226 (16)0.0366 (17)0.0291 (17)−0.0006 (14)0.0024 (13)−0.0058 (15)
C80.0247 (17)0.0331 (16)0.0280 (17)0.0018 (14)0.0059 (13)0.0017 (14)
C8A0.0172 (15)0.0259 (15)0.0308 (16)0.0018 (12)0.0074 (12)−0.0026 (13)
N90.0188 (13)0.0243 (12)0.0358 (15)−0.0004 (10)0.0034 (10)−0.0009 (11)
C9A0.0153 (15)0.0365 (17)0.0305 (17)0.0066 (13)0.0030 (12)−0.0057 (14)
C100.0203 (16)0.0262 (17)0.048 (2)−0.0022 (13)0.0043 (15)0.0017 (16)
C110.0223 (16)0.0238 (14)0.0321 (16)0.0021 (13)0.0025 (12)0.0043 (13)
C120.0273 (18)0.0325 (17)0.0408 (19)−0.0022 (15)0.0035 (14)−0.0034 (15)
C130.0306 (19)0.0331 (18)0.042 (2)0.0030 (15)0.0097 (14)−0.0013 (16)
C140.0210 (17)0.0367 (18)0.0360 (18)0.0040 (15)0.0046 (13)0.0088 (15)
C150.0236 (17)0.0416 (19)0.0357 (18)−0.0096 (15)0.0011 (14)0.0044 (16)
C160.0252 (17)0.0284 (17)0.0378 (19)−0.0031 (14)0.0021 (13)−0.0021 (14)
C1'0.0205 (16)0.0371 (18)0.0298 (17)0.0043 (14)0.0024 (13)0.0036 (15)
C2'0.0202 (16)0.048 (2)0.0318 (18)0.0100 (15)0.0054 (13)0.0058 (16)
C3'0.0312 (19)0.0403 (19)0.0336 (19)0.0107 (15)0.0126 (15)0.0119 (16)
C4'0.0245 (17)0.0282 (16)0.0376 (19)0.0042 (14)0.0154 (14)0.0013 (14)
C4A'0.0193 (15)0.0261 (15)0.0333 (16)0.0024 (13)0.0099 (12)−0.0013 (13)
C5'0.0248 (17)0.0365 (18)0.0378 (19)−0.0033 (15)0.0115 (14)−0.0101 (15)
C5A'0.0202 (15)0.0294 (15)0.0287 (16)0.0016 (13)0.0081 (12)−0.0049 (13)
C6'0.0304 (19)0.054 (2)0.0357 (19)−0.0029 (18)0.0048 (15)−0.0164 (18)
C7'0.0321 (19)0.055 (2)0.0249 (17)0.0100 (17)0.0017 (13)−0.0072 (16)
C8'0.0268 (17)0.0378 (18)0.0274 (17)0.0045 (14)0.0042 (13)0.0007 (15)
C8A'0.0199 (15)0.0291 (16)0.0263 (16)0.0024 (13)0.0060 (12)−0.0036 (13)
N9'0.0202 (13)0.0284 (13)0.0280 (13)−0.0010 (11)0.0030 (10)0.0035 (11)
C9A'0.0197 (15)0.0291 (15)0.0293 (16)0.0026 (13)0.0070 (12)0.0011 (13)
C10'0.0214 (16)0.0252 (15)0.0344 (18)−0.0027 (13)0.0075 (13)−0.0020 (15)
C11'0.0229 (15)0.0278 (15)0.0219 (15)0.0012 (13)0.0041 (12)0.0057 (13)
C12'0.0312 (18)0.0352 (18)0.0288 (17)0.0031 (15)0.0092 (13)0.0028 (14)
C13'0.039 (2)0.043 (2)0.042 (2)0.0130 (18)0.0205 (16)0.0135 (18)
C14'0.027 (2)0.063 (3)0.056 (2)0.0101 (19)0.0134 (17)0.031 (2)
C15'0.0245 (19)0.051 (2)0.062 (2)−0.0046 (18)−0.0030 (17)0.022 (2)
C16'0.0276 (18)0.0325 (18)0.044 (2)−0.0049 (15)−0.0042 (15)0.0083 (16)

Geometric parameters (Å, °)

C1—C21.383 (5)C1'—C2'1.377 (4)
C1—H11.07 (3)C1'—H1'1.03 (3)
C2—H21.04 (3)C2'—H2'0.99 (3)
C3—C21.383 (6)C3'—C2'1.403 (5)
C3—H30.9300C3'—H3'0.95 (3)
C4—C31.380 (5)C4'—C3'1.381 (5)
C4—H40.93 (3)C4'—H4'0.99 (4)
C4A—C41.395 (4)C4A'—C4'1.389 (4)
C5—H51.02 (4)C4A'—C5A'1.449 (4)
C5A—C4A1.442 (4)C5'—C6'1.374 (5)
C5A—C51.398 (4)C5'—H5'1.00 (3)
C6—C51.372 (4)C5A'—C5'1.404 (4)
C6—C71.401 (4)C6'—H6'0.97 (4)
C6—H60.97 (4)C7'—C6'1.394 (5)
C7—H70.97 (3)C7'—H7'0.9300
C8—C71.377 (4)C8'—C7'1.387 (4)
C8—H81.04 (3)C8'—H8'1.07 (3)
C8A—C5A1.401 (4)C8A'—C5A'1.416 (4)
C8A—C81.398 (4)C8A'—C8'1.383 (4)
N9—C8A1.391 (4)N9'—C8A'1.394 (4)
N9—C9A1.381 (4)N9'—C9A'1.379 (4)
N9—C101.458 (4)N9'—C10'1.450 (4)
C9A—C11.396 (4)C9A'—C1'1.395 (4)
C9A—C4A1.410 (4)C9A'—C4A'1.411 (4)
C10—C111.509 (4)C10'—C11'1.511 (4)
C10—H10A1.00 (3)C10'—H10C0.98 (3)
C10—H10B0.95 (3)C10'—H10D1.00 (3)
C11—C121.393 (4)C11'—C12'1.388 (4)
C11—C161.384 (4)C11'—C16'1.386 (4)
C12—H121.02 (4)C12'—C13'1.395 (4)
C13—C121.386 (4)C12'—H12'1.09 (3)
C13—H130.98 (3)C13'—H13'0.95 (3)
C14—C131.379 (5)C14'—C13'1.371 (5)
C14—C151.379 (5)C14'—C15'1.375 (6)
C14—H140.99 (4)C14'—H14'1.03 (4)
C15—C161.387 (4)C15'—H15'1.00 (4)
C15—H151.04 (3)C16'—C15'1.388 (5)
C16—H160.99 (3)C16'—H16'0.94 (3)
C2—C1—C9A116.8 (4)C2'—C1'—C9A'117.5 (3)
C2—C1—H1122.0 (17)C2'—C1'—H1'121.1 (16)
C9A—C1—H1121.0 (17)C9A'—C1'—H1'121.2 (16)
C1—C2—H2119.3 (18)C1'—C2'—C3'121.4 (3)
C3—C2—C1122.1 (3)C1'—C2'—H2'112.6 (17)
C3—C2—H2118.6 (18)C3'—C2'—H2'126.0 (17)
C2—C3—H3119.3C2'—C3'—H3'120.5 (19)
C4—C3—C2121.3 (3)C4'—C3'—C2'121.0 (3)
C4—C3—H3119.3C4'—C3'—H3'118.5 (19)
C3—C4—C4A118.2 (4)C3'—C4'—C4A'118.8 (3)
C3—C4—H4119.5 (19)C3'—C4'—H4'117 (2)
C4A—C4—H4122.2 (19)C4A'—C4'—H4'124 (2)
C4—C4A—C9A119.9 (3)C4'—C4A'—C5A'134.1 (3)
C4—C4A—C5A133.8 (3)C4'—C4A'—C9A'119.7 (3)
C9A—C4A—C5A106.3 (3)C9A'—C4A'—C5A'106.2 (2)
C5A—C5—H5122 (2)C5A'—C5'—H5'121.5 (18)
C6—C5—C5A118.8 (3)C6'—C5'—C5A'118.7 (3)
C6—C5—H5119 (2)C6'—C5'—H5'119.6 (19)
C5—C5A—C4A133.4 (3)C5'—C5A'—C4A'133.5 (3)
C5—C5A—C8A119.8 (3)C5'—C5A'—C8A'119.5 (3)
C8A—C5A—C4A106.8 (3)C8A'—C5A'—C4A'107.1 (2)
C5—C6—C7120.7 (3)C5'—C6'—C7'120.7 (3)
C5—C6—H6119.5 (19)C5'—C6'—H6'117 (2)
C7—C6—H6119.8 (19)C7'—C6'—H6'122 (2)
C6—C7—H7120 (2)C6'—C7'—H7'118.9
C8—C7—C6121.8 (3)C8'—C7'—C6'122.3 (3)
C8—C7—H7118.5 (19)C8'—C7'—H7'118.9
C7—C8—C8A117.2 (3)C7'—C8'—H8'121.4 (17)
C7—C8—H8124.1 (18)C8A'—C8'—C7'117.0 (3)
C8A—C8—H8118.6 (19)C8A'—C8'—H8'121.6 (17)
N9—C8A—C5A109.2 (2)N9'—C8A'—C5A'108.3 (2)
N9—C8A—C8129.2 (3)C8'—C8A'—C5A'121.8 (3)
C8—C8A—C5A121.6 (3)C8'—C8A'—N9'129.9 (3)
C8A—N9—C10126.8 (3)C8A'—N9'—C10'126.5 (2)
C9A—N9—C8A108.1 (2)C9A'—N9'—C8A'109.0 (2)
C9A—N9—C10124.9 (3)C9A'—N9'—C10'124.5 (2)
N9—C9A—C1128.9 (3)C1'—C9A'—C4A'121.6 (3)
N9—C9A—C4A109.5 (3)N9'—C9A'—C1'128.9 (3)
C1—C9A—C4A121.6 (3)N9'—C9A'—C4A'109.5 (2)
N9—C10—C11112.9 (2)N9'—C10'—C11'114.4 (2)
N9—C10—H10B108.5 (19)N9'—C10'—H10C108.6 (19)
N9—C10—H10A109.9 (18)N9'—C10'—H10D109.6 (18)
C11—C10—H10B110.0 (18)C11'—C10'—H10C113.1 (19)
C11—C10—H10A111.5 (18)C11'—C10'—H10D108.0 (18)
H10B—C10—H10A104 (3)H10C—C10'—H10D103 (2)
C12—C11—C10121.0 (3)C12'—C11'—C10'121.9 (3)
C16—C11—C10120.1 (3)C16'—C11'—C10'118.7 (3)
C16—C11—C12118.9 (3)C16'—C11'—C12'119.4 (3)
C11—C12—H12121.7 (19)C11'—C12'—C13'119.3 (3)
C13—C12—C11120.3 (3)C11'—C12'—H12'120.4 (18)
C13—C12—H12118.0 (19)C13'—C12'—H12'120.1 (18)
C12—C13—H13120 (2)C12'—C13'—H13'121 (2)
C14—C13—C12120.3 (3)C14'—C13'—C12'121.1 (4)
C14—C13—H13120 (2)C14'—C13'—H13'118 (2)
C13—C14—C15119.8 (3)C13'—C14'—C15'119.4 (3)
C13—C14—H14115 (2)C13'—C14'—H14'117 (2)
C15—C14—H14125 (2)C15'—C14'—H14'124 (2)
C14—C15—C16120.1 (3)C14'—C15'—C16'120.4 (4)
C14—C15—H15120.5 (18)C14'—C15'—H15'117 (2)
C16—C15—H15119.3 (18)C16'—C15'—H15'122 (2)
C11—C16—C15120.7 (3)C11'—C16'—C15'120.3 (3)
C11—C16—H16117.0 (17)C11'—C16'—H16'118 (2)
C15—C16—H16122.3 (18)C15'—C16'—H16'122 (2)
C9A—C1—C2—C3−1.1 (5)C9A'—C1'—C2'—C3'−0.8 (5)
C4—C3—C2—C11.0 (6)C4'—C3'—C2'—C1'0.3 (5)
C4A—C4—C3—C2−0.2 (5)C4A'—C4'—C3'—C2'−0.2 (4)
C5A—C4A—C4—C3177.8 (3)C5A'—C4A'—C4'—C3'178.8 (3)
C9A—C4A—C4—C3−0.5 (5)C9A'—C4A'—C4'—C3'0.5 (4)
C5—C5A—C4A—C41.2 (6)C4'—C4A'—C5A'—C5'0.0 (6)
C5—C5A—C4A—C9A179.7 (3)C4'—C4A'—C5A'—C8A'−178.6 (3)
C8A—C5A—C4A—C4−179.4 (3)C9A'—C4A'—C5A'—C5'178.5 (3)
C8A—C5A—C4A—C9A−0.9 (3)C9A'—C4A'—C5A'—C8A'−0.2 (3)
C8A—C5A—C5—C60.6 (4)C5A'—C5'—C6'—C7'−0.1 (5)
C4A—C5A—C5—C6179.9 (3)C4A'—C5A'—C5'—C6'−177.8 (3)
C7—C6—C5—C5A−0.2 (4)C8A'—C5A'—C5'—C6'0.7 (4)
C5—C6—C7—C8−0.7 (5)C8'—C7'—C6'—C5'−1.0 (5)
C8A—C8—C7—C61.2 (4)C8A'—C8'—C7'—C6'1.5 (5)
C8—C8A—C5A—C4A−179.5 (3)N9'—C8A'—C5A'—C4A'0.3 (3)
C8—C8A—C5A—C50.0 (4)N9'—C8A'—C5A'—C5'−178.5 (3)
N9—C8A—C5A—C4A0.4 (3)C8'—C8A'—C5A'—C4A'178.7 (3)
N9—C8A—C5A—C5179.9 (2)C8'—C8A'—C5A'—C5'−0.1 (4)
N9—C8A—C8—C7179.2 (3)N9'—C8A'—C8'—C7'177.1 (3)
C5A—C8A—C8—C7−0.8 (4)C5A'—C8A'—C8'—C7'−0.9 (4)
C9A—N9—C8A—C5A0.2 (3)C9A'—N9'—C8A'—C5A'−0.3 (3)
C9A—N9—C8A—C8−179.8 (3)C9A'—N9'—C8A'—C8'−178.6 (3)
C10—N9—C8A—C5A−175.1 (3)C10'—N9'—C8A'—C8'3.0 (5)
C10—N9—C8A—C84.8 (5)C10'—N9'—C8A'—C5A'−178.7 (3)
C8A—N9—C9A—C1178.6 (3)C8A'—N9'—C9A'—C1'179.9 (3)
C8A—N9—C9A—C4A−0.8 (3)C8A'—N9'—C9A'—C4A'0.2 (3)
C10—N9—C9A—C1−5.9 (5)C10'—N9'—C9A'—C1'−1.7 (5)
C10—N9—C9A—C4A174.7 (3)C10'—N9'—C9A'—C4A'178.6 (3)
C8A—N9—C10—C11104.4 (3)C8A'—N9'—C10'—C11'102.9 (3)
C9A—N9—C10—C11−70.2 (4)C9A'—N9'—C10'—C11'−75.2 (4)
N9—C9A—C1—C2−178.9 (3)N9'—C9A'—C1'—C2'−178.5 (3)
C4A—C9A—C1—C20.5 (5)C4A'—C9A'—C1'—C2'1.1 (4)
N9—C9A—C4A—C4179.8 (3)N9'—C9A'—C4A'—C4'178.7 (2)
N9—C9A—C4A—C5A1.1 (3)N9'—C9A'—C4A'—C5A'0.0 (3)
C1—C9A—C4A—C40.3 (4)C1'—C9A'—C4A'—C4'−1.0 (4)
C1—C9A—C4A—C5A−178.4 (3)C1'—C9A'—C4A'—C5A'−179.7 (3)
N9—C10—C11—C12−54.4 (4)N9'—C10'—C11'—C16'155.3 (3)
N9—C10—C11—C16125.9 (3)N9'—C10'—C11'—C12'−26.9 (4)
C10—C11—C12—C13−179.6 (3)C10'—C11'—C12'—C13'−175.9 (3)
C16—C11—C12—C130.0 (5)C16'—C11'—C12'—C13'1.9 (4)
C10—C11—C16—C15179.8 (3)C10'—C11'—C16'—C15'175.8 (3)
C12—C11—C16—C150.2 (5)C12'—C11'—C16'—C15'−2.0 (5)
C14—C13—C12—C11−0.2 (5)C11'—C12'—C13'—C14'−0.3 (5)
C15—C14—C13—C120.2 (5)C15'—C14'—C13'—C12'−1.1 (5)
C13—C14—C15—C16−0.1 (5)C13'—C14'—C15'—C16'1.0 (5)
C14—C15—C16—C11−0.1 (5)C11'—C16'—C15'—C14'0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1'i0.97 (4)2.940 (4)3.636 (5)129.46 (5)
C10'—H10C···Cg1'ii0.98 (3)2.787 (4)3.700 (5)154.92 (4)
C4'—H4'···Cg3i0.99 (4)2.706 (4)3.554 (4)144.36 (5)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2745).

References

  • Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.
  • Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.
  • Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.
  • Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.
  • Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.
  • Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.
  • Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.
  • Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem.34, 1239–1242.
  • Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch. 3. New York: Academic Press.
  • Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography