PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1020.
Published online 2010 April 2. doi:  10.1107/S1600536810011955
PMCID: PMC2979275

2-Chloro-3-nitro­pyridine

Abstract

In the title compound, C5H3ClN2O2, the nitro group is twisted by 38.5 (2)° with respect to the pyridine ring. In the crystal, adjacent mol­ecules are linked by non-classical C—H(...)N and C—H(...)O hydrogen bonds, forming a layer motif.

Related literature

For the crystal structure of isostructural 2-iodo-3-nitro­pyridine, see: Mao & Chen (2009 [triangle]). For the crystal structure of 2-chloro-5-nitro­pyridine, see: Ng (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1020-scheme1.jpg

Experimental

Crystal data

  • C5H3ClN2O2
  • M r = 158.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1020-efi1.jpg
  • a = 7.613 (1) Å
  • b = 12.232 (2) Å
  • c = 7.716 (1) Å
  • β = 118.485 (2)°
  • V = 631.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.771, T max = 0.862
  • 5889 measured reflections
  • 1445 independent reflections
  • 1061 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.02
  • 1445 reflections
  • 103 parameters
  • 3 restraints
  • All H-atom parameters refined
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011955/im2183sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011955/im2183Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

According to a recent report on the crystal structure of 2-chloro-5-nitropyridine the respective molecule is planar (maximum r.m.s. deviation of non-hydrogen atoms is 0.090 Å). This molecule has the electron withdrawing substituents para to each other. The substituents interact through a short Cl···O contact of 3.068 (4) Å to generate a chain motif (Ng, 2010).

In the title compound 2-chloro-3-nitropyridine with the nitro group ortho to the chlorine substituent (Scheme I, Fig. 1), a similar Cl···O contact is also observed but the nitro group is twisted to avoid repulsion. Adjacent molecules are linked by non-classical C–H···N and C–H···O hydrogen bonds to form a layer motif (Fig. 2, Table 1). The C–H···N interaction is almost linear (Table 1).

2-Chloro-3-nitropyridine is isostructural with the iodo analog. In the iodo compound, the I···O contact is necessarily longer (Mao & Chen, 2009).

Experimental

2-Chloro-3-nitropyridine was obtained from the Aldrich Chemical Company, and was recrystallized from ethyl acetate.

Refinement

Carbon bound H-atoms were located in a difference Fourier map. They were refined with a distance restraint of C–H 0.93±0.01 Å; their temperature factors were refined without constraints.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C5H3ClNO2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Non-classical hydrogen-bonded layer motif.

Crystal data

C5H3ClN2O2F(000) = 320
Mr = 158.54Dx = 1.668 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1393 reflections
a = 7.613 (1) Åθ = 3.3–24.8°
b = 12.232 (2) ŵ = 0.53 mm1
c = 7.716 (1) ÅT = 293 K
β = 118.485 (2)°Block, faint yellow
V = 631.5 (2) Å30.30 × 0.20 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer1445 independent reflections
Radiation source: fine-focus sealed tube1061 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.771, Tmax = 0.862k = −15→15
5889 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.02w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1169P] where P = (Fo2 + 2Fc2)/3
1445 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.67770 (9)0.67094 (4)0.54558 (9)0.0583 (2)
O10.5971 (3)0.89254 (15)0.6322 (3)0.0793 (6)
O20.8242 (3)1.00241 (15)0.6464 (3)0.0804 (6)
N10.6852 (3)0.71189 (13)0.2214 (3)0.0471 (4)
N20.7123 (3)0.92525 (15)0.5760 (3)0.0514 (5)
C10.6891 (3)0.75880 (14)0.3767 (3)0.0381 (4)
C20.7109 (3)0.87120 (14)0.4062 (3)0.0375 (4)
C30.7322 (3)0.93592 (16)0.2719 (3)0.0468 (5)
C40.7252 (4)0.88674 (18)0.1090 (3)0.0522 (5)
C50.7011 (3)0.77541 (19)0.0896 (3)0.0516 (5)
H30.751 (3)1.0104 (9)0.294 (3)0.060 (7)*
H40.740 (3)0.9261 (17)0.013 (3)0.061 (7)*
H50.693 (3)0.7407 (18)−0.021 (2)0.060 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0742 (4)0.0455 (3)0.0605 (4)−0.0024 (2)0.0366 (3)0.0121 (2)
O10.1151 (16)0.0782 (12)0.0759 (13)0.0077 (11)0.0709 (13)−0.0011 (9)
O20.0855 (13)0.0709 (11)0.0755 (12)−0.0105 (10)0.0308 (11)−0.0382 (10)
N10.0558 (11)0.0367 (8)0.0490 (10)−0.0028 (7)0.0252 (9)−0.0068 (7)
N20.0605 (12)0.0499 (10)0.0427 (10)0.0115 (8)0.0236 (9)−0.0031 (8)
C10.0370 (10)0.0354 (9)0.0399 (10)0.0002 (7)0.0168 (8)0.0023 (7)
C20.0385 (10)0.0340 (8)0.0378 (10)0.0031 (7)0.0164 (8)−0.0014 (7)
C30.0585 (13)0.0324 (9)0.0497 (12)−0.0014 (8)0.0260 (10)−0.0009 (8)
C40.0671 (14)0.0491 (12)0.0507 (13)−0.0024 (10)0.0366 (11)0.0038 (9)
C50.0640 (14)0.0520 (12)0.0447 (12)−0.0029 (10)0.0307 (11)−0.0083 (9)

Geometric parameters (Å, °)

Cl1—C11.7226 (18)C2—C31.374 (3)
O1—N21.217 (2)C3—C41.371 (3)
O2—N21.213 (2)C3—H30.925 (9)
N1—C11.317 (2)C4—C51.373 (3)
N1—C51.330 (3)C4—H40.930 (10)
N2—C21.462 (2)C5—H50.929 (10)
C1—C21.391 (3)
C1—N1—C5118.07 (17)C4—C3—C2118.15 (18)
O2—N2—O1124.60 (19)C4—C3—H3122.2 (15)
O2—N2—C2117.20 (19)C2—C3—H3119.7 (15)
O1—N2—C2118.15 (18)C3—C4—C5118.67 (19)
N1—C1—C2121.95 (16)C3—C4—H4122.2 (15)
N1—C1—Cl1115.43 (14)C5—C4—H4119.2 (15)
C2—C1—Cl1122.55 (14)N1—C5—C4123.54 (18)
C3—C2—C1119.58 (17)N1—C5—H5116.5 (15)
C3—C2—N2117.52 (16)C4—C5—H5120.0 (15)
C1—C2—N2122.90 (17)
C5—N1—C1—C2−0.5 (3)O2—N2—C2—C1143.2 (2)
C5—N1—C1—Cl1−177.56 (15)O1—N2—C2—C1−39.3 (3)
N1—C1—C2—C3−1.1 (3)C1—C2—C3—C41.9 (3)
Cl1—C1—C2—C3175.72 (15)N2—C2—C3—C4−178.09 (19)
N1—C1—C2—N2178.96 (18)C2—C3—C4—C5−1.2 (3)
Cl1—C1—C2—N2−4.2 (3)C1—N1—C5—C41.3 (3)
O2—N2—C2—C3−36.8 (3)C3—C4—C5—N1−0.4 (4)
O1—N2—C2—C3140.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.93 (1)2.53 (1)3.430 (3)166 (2)
C4—H4···O1ii0.93 (1)2.64 (2)3.327 (3)132 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2183).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mao, L.-H. & Chen, Y. (2009). Acta Cryst. E65, o1428. [PMC free article] [PubMed]
  • Ng, S. W. (2010). Acta Cryst. E66, o848. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography