PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m511.
Published online 2010 April 10. doi:  10.1107/S1600536810011979
PMCID: PMC2979272

Poly[μ2-aqua-aqua­(μ3-1H-benzimidazole-5,6-dicarboxyl­ato-κ3 N 3:O 5:O 5′)manganese(II)]

Abstract

In the title complex, [Mn(C9H4N2O4)(H2O)2]n, the MnII atom is in a distorted octa­hedral coordination completed by one N atom from one 1H-benzimidazole-5,6-dicarboxyl­ate ligand, two O atoms from two different 1H-benzimidazole-5,6-dicarboxyl­ate ligands, and three O atoms from three water mol­ecules. Two bridging water mol­ecules and two bridging carboxyl­ate groups from a 1H-benzimidazole-5,6-dicarboxyl­ate ligand connect two MnII ions into a dimeric structure. In the crystal, extensive inter­molecular O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonding forms a three-dimensional network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes and related structures, see: Yao et al. (2008 [triangle]); Wei et al. (2009 [triangle]); Song et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m511-scheme1.jpg

Experimental

Crystal data

  • [Mn(C9H4N2O4)(H2O)2]
  • M r = 295.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m511-efi1.jpg
  • a = 8.8875 (18) Å
  • b = 9.2079 (18) Å
  • c = 12.939 (3) Å
  • β = 97.22 (3)°
  • V = 1050.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 293 K
  • 0.29 × 0.26 × 0.25 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.708, T max = 0.740
  • 8122 measured reflections
  • 1888 independent reflections
  • 1792 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.098
  • S = 1.11
  • 1888 reflections
  • 163 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011979/zb2004sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011979/zb2004Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Scientific Research Project of Hunan Department of Education (No. 09c259) for supporting this work.

supplementary crystallographic information

Comment

1H-Benzimidazole-5,6-dicarboxylate ligand(H2L) play an important role in coordination chemistry. They usually adopt diverse binding modes as monodentate, chelating to one metal center, bridging to two metal centers (Yao et al., 2008;Wei et al., 2009;Song et al., 2009a,b). In the present paper, we synthesized a novel colorless complex [Mn(C9H4N2O4)(H2O)2]n. It is isostructural to the cobalt compound with reference of Wei et al., 2009.

The coordination geometries of Mn centers are very close to the values observed in the [Co(C9H4N2O4)(H2O)2]n compound. The Mn atoms are linked by water bridges and carboxylate groups, forming an infinite chain. The Mn···Mn distance is 3.2555 (7)Å longer than the Co···Co distance 3.114 (1) Å. In the [Co(C9H4N2O4)(H2O)2]n compound, the Co—O bond lengths range between 2.0304 (18) and 2.2314 (19) Å, whereas in the title compound, the Mn—O bond lengths ranged between 2.1151 (19) and 2.3334 (19) Å. Intermolecular O—H···O , N—H···O and C—H···O hydrogen bonds form the 3D structure (Fig. 2). The hydrogen bonds are in the normal range (Table 1).

Experimental

MnCl2(0.1 mmol), H2L(0.1 mmol), H2O (15 ml) and a small amount NaOH for adjusting pH to 7 was placed in a 23 ml Teflon reactor,which was heated to 426 K for two days and then cooled to room temperature , and left to stand at room temperature for a few days, then the colorless block crystals were obtained.

Refinement

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Figures

Fig. 1.
A section of the structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 1-x, 1-y, 1-z. (ii)y, x-1, z. (iii) 2-x, 1-y,2-z.]
Fig. 2.
A view of the three-dimensional structure of the title compound along the b axis.Hydrogen bonds are shown as dashed lines.

Crystal data

[Mn(C9H4N2O4)(H2O)2]F(000) = 596
Mr = 295.11Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9020 reflections
a = 8.8875 (18) Åθ = 3.2–27.5°
b = 9.2079 (18) ŵ = 1.28 mm1
c = 12.939 (3) ÅT = 293 K
β = 97.22 (3)°Block, colorless
V = 1050.5 (4) Å30.29 × 0.26 × 0.25 mm
Z = 4

Data collection

Rigaku/MSC Mercury CCD diffractometer1888 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan (REQAB; Jacobson, 1998)h = −10→10
Tmin = 0.708, Tmax = 0.740k = −11→11
8122 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0562P)2 + 1.2161P] where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.71 e Å3
18 restraintsΔρmin = −0.84 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6538 (3)0.9382 (3)0.9155 (2)0.0248 (6)
H10.55520.96780.92150.030*
N10.7164 (2)0.8221 (3)0.96244 (19)0.0229 (5)
O1W0.52018 (17)0.5378 (2)0.88035 (12)0.0232 (4)
Mn10.59756 (4)0.64549 (4)1.03462 (3)0.01916 (18)
C20.8810 (3)0.9343 (3)0.8676 (2)0.0222 (6)
N20.7455 (3)1.0094 (3)0.85830 (19)0.0253 (5)
H20.72411.08710.82260.030*
O21.3361 (2)0.7520 (2)0.77220 (15)0.0249 (4)
O2W0.6154 (2)0.74283 (19)1.18596 (14)0.0364 (5)
C30.8628 (3)0.8183 (3)0.9340 (2)0.0204 (5)
O31.3671 (2)0.7185 (2)0.99961 (16)0.0247 (4)
C40.9821 (3)0.7226 (3)0.9624 (2)0.0229 (6)
H40.97240.64631.00820.028*
O41.2334 (2)0.5175 (2)0.95142 (17)0.0281 (5)
C51.1158 (3)0.7451 (3)0.9201 (2)0.0204 (6)
C61.1295 (3)0.8575 (3)0.8473 (2)0.0208 (6)
C71.2657 (3)0.8663 (3)0.7888 (2)0.0194 (6)
C81.2495 (3)0.6528 (3)0.9593 (2)0.0211 (6)
C131.01235 (18)0.95590 (19)0.82118 (13)0.0237 (6)
H131.02121.03210.77520.028*
H4W0.57000.80401.14510.028*
H1W0.44440.56570.84000.028*
H3W0.57940.65891.17540.028*
H2W0.59000.50890.84730.028*
O11.2983 (3)0.9885 (2)0.75589 (18)0.0341 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0165 (13)0.0247 (15)0.0341 (15)0.0037 (10)0.0065 (11)0.0005 (12)
N10.0160 (11)0.0230 (12)0.0309 (13)0.0014 (9)0.0079 (9)0.0030 (10)
O1W0.0217 (9)0.0265 (10)0.0230 (9)0.0043 (8)0.0091 (7)0.0005 (8)
Mn10.0167 (3)0.0175 (3)0.0242 (3)0.00077 (14)0.00610 (17)0.00014 (15)
C20.0182 (13)0.0197 (13)0.0291 (14)0.0021 (10)0.0048 (11)0.0025 (11)
N20.0205 (12)0.0214 (12)0.0348 (13)0.0057 (9)0.0067 (10)0.0086 (10)
O20.0248 (10)0.0233 (10)0.0285 (10)0.0012 (8)0.0102 (8)−0.0021 (8)
O2W0.0467 (14)0.0317 (12)0.0324 (12)−0.0080 (10)0.0109 (10)−0.0085 (9)
C30.0183 (9)0.0208 (9)0.0225 (9)0.0002 (8)0.0047 (8)0.0010 (8)
O30.0175 (10)0.0255 (11)0.0314 (10)0.0030 (8)0.0044 (8)−0.0019 (8)
C40.0192 (13)0.0208 (14)0.0300 (14)0.0011 (10)0.0082 (11)0.0071 (11)
O40.0191 (9)0.0195 (10)0.0470 (12)0.0029 (7)0.0089 (9)0.0052 (9)
C50.0171 (13)0.0184 (13)0.0263 (14)0.0001 (10)0.0055 (10)0.0010 (10)
C60.0182 (13)0.0198 (14)0.0256 (14)−0.0015 (9)0.0077 (11)−0.0005 (10)
C70.0183 (13)0.0180 (13)0.0228 (13)−0.0028 (9)0.0068 (11)−0.0012 (10)
C80.0187 (14)0.0230 (15)0.0239 (14)0.0026 (10)0.0112 (11)0.0038 (10)
C130.0232 (14)0.0189 (13)0.0302 (14)0.0006 (10)0.0087 (11)0.0066 (11)
O10.0359 (9)0.0296 (9)0.0411 (9)−0.0028 (7)0.0212 (7)0.0013 (7)

Geometric parameters (Å, °)

C1—N11.317 (4)N2—H20.8600
C1—N21.339 (4)O2—C71.257 (3)
C1—H10.9300O2W—H4W0.8407
N1—C31.396 (3)O2W—H3W0.8411
N1—Mn12.209 (2)C3—C41.392 (4)
O1W—Mn12.2572 (18)O3—C81.262 (4)
O1W—Mn1i2.3334 (19)O3—Mn1iv2.1495 (19)
O1W—H1W0.8386C4—C51.384 (4)
O1W—H2W0.8401C4—H40.9300
Mn1—O4ii2.115 (2)O4—C81.256 (3)
Mn1—O2W2.141 (2)O4—Mn1ii2.115 (2)
Mn1—O3iii2.1496 (19)C5—C61.414 (4)
Mn1—O1Wi2.3334 (19)C5—C81.497 (4)
Mn1—H4W2.0785C6—C131.390 (3)
Mn1—H3W1.8533C6—C71.508 (4)
C2—N21.381 (3)C7—O11.250 (3)
C2—C31.392 (4)C13—H130.9300
C2—C131.393 (3)
N1—C1—N2113.6 (2)N1—Mn1—H3W118.2
N1—C1—H1123.2O1W—Mn1—H3W147.6
N2—C1—H1123.2O1Wi—Mn1—H3W59.0
C1—N1—C3104.6 (2)H4W—Mn1—H3W41.0
C1—N1—Mn1126.53 (18)N2—C2—C3105.7 (2)
C3—N1—Mn1127.15 (18)N2—C2—C13131.3 (2)
Mn1—O1W—Mn1i90.32 (6)C3—C2—C13123.0 (2)
Mn1—O1W—H1W123.2C1—N2—C2107.0 (2)
Mn1i—O1W—H1W98.2C1—N2—H2126.5
Mn1—O1W—H2W115.3C2—N2—H2126.5
Mn1i—O1W—H2W114.5Mn1—O2W—H4W74.3
H1W—O1W—H2W111.5Mn1—O2W—H3W58.9
O4ii—Mn1—O2W104.41 (8)H4W—O2W—H3W111.8
O4ii—Mn1—O3iii152.59 (8)C2—C3—C4120.3 (2)
O2W—Mn1—O3iii91.19 (8)C2—C3—N1109.1 (2)
O4ii—Mn1—N1100.75 (8)C4—C3—N1130.6 (3)
O2W—Mn1—N195.40 (9)C8—O3—Mn1iv130.88 (18)
O3iii—Mn1—N1100.03 (8)C5—C4—C3117.6 (3)
O4ii—Mn1—O1W84.15 (8)C5—C4—H4121.2
O2W—Mn1—O1W166.37 (7)C3—C4—H4121.2
O3iii—Mn1—O1W76.97 (7)C8—O4—Mn1ii128.63 (18)
N1—Mn1—O1W93.33 (8)C4—C5—C6121.5 (2)
O4ii—Mn1—O1Wi78.58 (7)C4—C5—C8117.7 (2)
O2W—Mn1—O1Wi81.81 (7)C6—C5—C8120.6 (2)
O3iii—Mn1—O1Wi81.59 (7)C13—C6—C5121.0 (2)
N1—Mn1—O1Wi176.83 (8)C13—C6—C7117.8 (2)
O1W—Mn1—O1Wi89.68 (6)C5—C6—C7121.0 (2)
O4ii—Mn1—H4W125.7O1—C7—O2123.6 (3)
O2W—Mn1—H4W22.9O1—C7—C6117.1 (2)
O3iii—Mn1—H4W74.5O2—C7—C6119.3 (2)
N1—Mn1—H4W83.0O4—C8—O3126.1 (3)
O1W—Mn1—H4W150.1O4—C8—C5117.2 (2)
O1Wi—Mn1—H4W94.9O3—C8—C5116.7 (2)
O4ii—Mn1—H3W96.4C6—C13—C2116.4 (2)
O2W—Mn1—H3W22.9C6—C13—H13121.8
O3iii—Mn1—H3W89.3C2—C13—H13121.8

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x−1, y, z; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2v0.861.982.839 (3)174
O2W—H4W···O3iii0.842.563.065 (3)120
O1W—H1W···O2iii0.842.102.819 (3)143
O2W—H3W···O1Wi0.842.102.934 (3)169
O1W—H2W···O1vi0.841.772.575 (3)160
C4—H4···O4ii0.932.483.216 (3)136

Symmetry codes: (v) −x+2, y+1/2, −z+3/2; (iii) x−1, y, z; (i) −x+1, −y+1, −z+2; (vi) −x+2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2004).

References

  • Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009b). Acta Cryst. E65, m701. [PMC free article] [PubMed]
  • Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702. [PMC free article] [PubMed]
  • Wei, Y. Q., Yu, Y. F., Sa, R. J., Li, Q. H. & Wu, K. C. (2009). CrystEngComm, 11,1054–1060.
  • Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des.8, 2299–2306.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography