PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1172.
Published online 2010 April 24. doi:  10.1107/S1600536810010937
PMCID: PMC2979270

N′-[1-(2-Amino­phen­yl)ethyl­idene]benzo­hydrazide

Abstract

The title compound, C15H15N3O, was obtained by a condensation reaction between o-amino­acetophenone and benzoyl hydrazine. The mol­ecule displays an E configuration about the C=N bond. Intra­molecular N—H(...)N hydrogen bonds are formed between the 2-amino­phenyl and imine groups. In the crystal, dimers are formed between mol­ecules linked by inter­molecular N—H(...)O hydrogen bonds from the 2-amino­phenyl group. In addition there are inter­molecular N—H(...)O hydrogen bonds between the amine and carbonyl groups of adjacent mol­ecules. The mol­ecule is twisted rather than planar due to a steric inter­action between the central amide group and the two outer benzene rings. The dihedral angles between this central group and the two rings are 23.29 (9) and 24.96 (9)°.

Related literature

For the biological properties of hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones, see: Gupta et al. (2007 [triangle]); Kocyigit-Kaymakcioglu et al. (2009 [triangle]); Kou et al. (2009 [triangle]); Mahalingam et al. (2009 [triangle]); Sundaraval et al. (2009 [triangle]); Yin et al. (2007 [triangle]); Zhang et al. (2007 [triangle]). For related structures, see: Fun et al. (2008a [triangle],b [triangle]); Qiu & Zhao (2008 [triangle]); Qiu (2009 [triangle]); Ren (2009 [triangle]); Xiao & Wei (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1172-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O
  • M r = 253.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1172-efi1.jpg
  • a = 13.7531 (10) Å
  • b = 5.1575 (3) Å
  • c = 18.7178 (13) Å
  • β = 105.917 (7)°
  • V = 1276.78 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.33 × 0.25 × 0.13 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.780, T max = 1.000
  • 5257 measured reflections
  • 2894 independent reflections
  • 1839 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.125
  • S = 0.98
  • 2894 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1999 [triangle]); software used to prepare material for publication: CIFTAB (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010937/bv2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010937/bv2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CSIR for financial support.

supplementary crystallographic information

Comment

Hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones show excellent biological properties, such as antimicrobial, antitubercular, anticancer and antimalarial (Kocyigit-Kaymakcioglu et al., 2009; Kou et al., 2009; Mahalingam et al.., 2009; Sundaravel et al., 2009; Yin et al., 2007; Zhang et al.,2007. The hydrazones are also important for their use as plasticizers and stabilizers for polymers, polymerization initiators, antioxidants and as indicators (Gupta et al., 2007). Recently, a large number of hydrazone compounds have been reported (Qiu et al., 2008; Qiu, 2009; Ren et al., 2009). In this paper, a new hydrazone compound, derived from the condensation reaction of 2-aminoacetophenone and benzoyl hydrazine, has been reported.

The molecular structure of the title compound is shown in the fig. 1. The molecule and displays an E configuration about the C=N double bond. All bond lengths are within normal ranges (Xiao et al., 2009; Fun et al., 2008a,b). The molecular conformation is stabilized by an intramolecular N—H···.O hydrogen bond and short contact bonds (Fig. 1). In the crystal there are both inter- and intra-molecular hydrogen bonding involving the amine protons. In-plane dimers (r.m.s. deviation for N1 N2 N3 C10–C16 and equivalent atoms = 0.016 Å) are formed between molecules linked by N—H···O hydrogen bonds from the 2-aminophenyl moiety (Fig. 2). In addition there are intermolecular out of plane N—H···O hydrogen bonds between amine and carbonyl group of adjoining molecules (Fig. 3). Intramolecular N—H···N hydrogen bonds are formed between the 2-aminophenyl and imine moieties within the same molecule. The molecule is twisted rather than planar due to steric interaction between the central amide group and the two end groups. The torsion angles between this central group and the two ends are 23.29 (9) and 24.96 (9)° respectively.

Experimental

An ethanolic solution of benzoyl hydazine (50 ml, 6.8 g) was taken in a round bottom flask followed by dropwise addition of ethanolic solution of o-aminoacetophenone (50 ml, 6.05 ml) with stirring. The above solution was refluxed for 4-5 h and gave a yellow transparent solution. On keeping the solution in open air for 5-6 h in a beaker, yellow crystals of the product were obtained.

Refinement

H atoms bound to C and N atoms were located in a difference Fourier map, refined isotropically and then placed using HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms with the N—H distances of 0.86 Å, and C—H distances of 0.93 and 0.96 (2) Å with Uĩso~(H) = 1.2 [1.5Ueq(C) for CH3].

Figures

Fig. 1.
Molecular diagram with labeled atoms of Benzoic acid [1-(2-amino-phenyl)- ethylidene]-hydrazide. Hydrogen bonds are shown by dashed lines.
Fig. 2.
Diagram showing the formation of in-plane intermolecular hydrogen-bonded dimers. Hydrogen bonds are shown by dashed lines.
Fig. 3.
Packing diagram showing both in-plane and out of plane intermolecular hydrogen bonding. Hydrogen bonds are shown by dashed lines.

Crystal data

C15H15N3OF(000) = 536
Mr = 253.30Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: 449 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.7531 (10) ÅCell parameters from 2381 reflections
b = 5.1575 (3) Åθ = 2.1–28.9°
c = 18.7178 (13) ŵ = 0.09 mm1
β = 105.917 (7)°T = 293 K
V = 1276.78 (15) Å3Block, yellow
Z = 40.33 × 0.25 × 0.13 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer2894 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 16.0938 pixels mm-1θmax = 28.9°, θmin = 2.3°
ω scansh = −18→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = 0→6
Tmin = 0.780, Tmax = 1.000l = 0→25
5257 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0722P)2] where P = (Fo2 + 2Fc2)/3
2894 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.66011 (8)0.1102 (2)0.65390 (6)0.0519 (3)
N10.39154 (10)0.1668 (2)0.49800 (7)0.0503 (4)
H1A0.37860.04520.46530.060*
H1B0.45180.18490.52670.060*
N20.50765 (9)0.4528 (2)0.60680 (7)0.0421 (3)
N30.60065 (8)0.5188 (2)0.65630 (6)0.0412 (3)
H3B0.61150.67360.67380.049*
C10.76802 (10)0.4196 (2)0.73150 (8)0.0358 (3)
C20.85408 (11)0.2716 (3)0.73861 (8)0.0447 (4)
H2A0.85260.13230.70680.054*
C30.94215 (11)0.3296 (3)0.79275 (9)0.0525 (4)
H3A0.99990.23060.79660.063*
C40.94508 (12)0.5322 (3)0.84082 (9)0.0511 (4)
H4A1.00420.56800.87770.061*
C50.86097 (12)0.6814 (3)0.83443 (9)0.0515 (4)
H5A0.86320.81930.86680.062*
C60.77205 (11)0.6280 (3)0.77967 (8)0.0440 (4)
H6A0.71530.73130.77520.053*
C70.67244 (10)0.3368 (3)0.67595 (8)0.0369 (3)
C90.43928 (12)0.8049 (3)0.66631 (9)0.0550 (4)
H9A0.49360.76690.70970.083*
H9B0.37700.81730.67990.083*
H9C0.45250.96640.64530.083*
C100.43119 (10)0.5926 (3)0.61032 (7)0.0367 (3)
C110.33225 (10)0.5346 (2)0.55733 (7)0.0357 (3)
C120.31699 (11)0.3301 (3)0.50418 (8)0.0391 (3)
C130.21932 (12)0.2954 (3)0.45633 (9)0.0508 (4)
H13A0.20850.16380.42100.061*
C140.13992 (13)0.4485 (3)0.45999 (10)0.0571 (5)
H14A0.07620.41840.42790.069*
C150.15369 (12)0.6478 (3)0.51108 (9)0.0526 (4)
H15A0.09970.75280.51350.063*
C160.24806 (11)0.6886 (3)0.55826 (9)0.0468 (4)
H16A0.25680.82370.59230.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0476 (6)0.0412 (6)0.0576 (7)0.0001 (5)−0.0013 (5)−0.0141 (5)
N10.0502 (8)0.0459 (7)0.0476 (8)−0.0006 (6)0.0015 (6)−0.0132 (6)
N20.0344 (6)0.0422 (7)0.0416 (7)−0.0020 (5)−0.0033 (5)−0.0061 (5)
N30.0364 (7)0.0354 (6)0.0431 (7)−0.0027 (5)−0.0035 (5)−0.0068 (5)
C10.0367 (7)0.0334 (7)0.0342 (7)−0.0036 (6)0.0044 (6)0.0011 (6)
C20.0416 (8)0.0453 (8)0.0434 (9)0.0002 (7)0.0052 (6)−0.0068 (7)
C30.0375 (8)0.0583 (10)0.0549 (10)0.0018 (7)0.0012 (7)−0.0017 (8)
C40.0436 (9)0.0545 (10)0.0455 (9)−0.0107 (8)−0.0040 (7)−0.0004 (8)
C50.0579 (10)0.0447 (9)0.0448 (9)−0.0076 (7)0.0023 (7)−0.0101 (7)
C60.0438 (8)0.0378 (8)0.0462 (9)0.0002 (6)0.0052 (7)−0.0044 (7)
C70.0365 (7)0.0360 (8)0.0361 (8)−0.0017 (6)0.0063 (6)−0.0031 (6)
C90.0441 (9)0.0630 (10)0.0519 (10)0.0027 (8)0.0029 (7)−0.0175 (8)
C100.0389 (8)0.0352 (7)0.0337 (7)−0.0045 (6)0.0064 (6)0.0020 (6)
C110.0351 (7)0.0345 (7)0.0337 (7)−0.0034 (6)0.0028 (6)0.0034 (6)
C120.0421 (8)0.0357 (7)0.0359 (8)−0.0038 (6)0.0043 (6)0.0043 (6)
C130.0519 (9)0.0489 (9)0.0424 (9)−0.0075 (8)−0.0026 (7)−0.0052 (7)
C140.0427 (9)0.0637 (10)0.0527 (10)−0.0068 (8)−0.0075 (7)0.0038 (8)
C150.0400 (9)0.0576 (10)0.0544 (10)0.0056 (7)0.0029 (7)0.0036 (8)
C160.0441 (9)0.0453 (9)0.0468 (9)0.0016 (7)0.0051 (7)−0.0028 (7)

Geometric parameters (Å, °)

O1—C71.2359 (16)C5—H5A0.9300
N1—C121.3561 (17)C6—H6A0.9300
N1—H1A0.8600C9—C101.498 (2)
N1—H1B0.8600C9—H9A0.9600
N2—C101.2915 (18)C9—H9B0.9600
N2—N31.4002 (14)C9—H9C0.9600
N3—C71.3387 (17)C10—C111.4781 (18)
N3—H3B0.8600C11—C161.4079 (19)
C1—C21.3838 (19)C11—C121.4254 (19)
C1—C61.3942 (19)C12—C131.4068 (19)
C1—C71.4972 (18)C13—C141.364 (2)
C2—C31.382 (2)C13—H13A0.9300
C2—H2A0.9300C14—C151.381 (2)
C3—C41.372 (2)C14—H14A0.9300
C3—H3A0.9300C15—C161.371 (2)
C4—C51.367 (2)C15—H15A0.9300
C4—H4A0.9300C16—H16A0.9300
C5—C61.391 (2)
C12—N1—H1A120.0C10—C9—H9A109.5
C12—N1—H1B120.0C10—C9—H9B109.5
H1A—N1—H1B120.0H9A—C9—H9B109.5
C10—N2—N3116.06 (11)C10—C9—H9C109.5
C7—N3—N2118.84 (11)H9A—C9—H9C109.5
C7—N3—H3B120.6H9B—C9—H9C109.5
N2—N3—H3B120.6N2—C10—C11117.74 (12)
C2—C1—C6118.80 (13)N2—C10—C9122.56 (13)
C2—C1—C7118.32 (12)C11—C10—C9119.69 (13)
C6—C1—C7122.72 (13)C16—C11—C12117.51 (12)
C3—C2—C1120.37 (14)C16—C11—C10119.11 (13)
C3—C2—H2A119.8C12—C11—C10123.39 (13)
C1—C2—H2A119.8N1—C12—C13118.61 (13)
C4—C3—C2120.52 (15)N1—C12—C11123.31 (12)
C4—C3—H3A119.7C13—C12—C11118.07 (13)
C2—C3—H3A119.7C14—C13—C12122.14 (15)
C5—C4—C3119.95 (14)C14—C13—H13A118.9
C5—C4—H4A120.0C12—C13—H13A118.9
C3—C4—H4A120.0C13—C14—C15120.38 (15)
C4—C5—C6120.33 (15)C13—C14—H14A119.8
C4—C5—H5A119.8C15—C14—H14A119.8
C6—C5—H5A119.8C16—C15—C14119.08 (15)
C5—C6—C1120.02 (14)C16—C15—H15A120.5
C5—C6—H6A120.0C14—C15—H15A120.5
C1—C6—H6A120.0C15—C16—C11122.81 (14)
O1—C7—N3123.24 (12)C15—C16—H16A118.6
O1—C7—C1121.04 (12)C11—C16—H16A118.6
N3—C7—C1115.59 (12)
C10—N2—N3—C7155.32 (13)N3—N2—C10—C9−3.0 (2)
C6—C1—C2—C30.2 (2)N2—C10—C11—C16−178.10 (13)
C7—C1—C2—C3−175.37 (14)C9—C10—C11—C162.9 (2)
C1—C2—C3—C40.9 (2)N2—C10—C11—C121.4 (2)
C2—C3—C4—C5−1.3 (3)C9—C10—C11—C12−177.57 (13)
C3—C4—C5—C60.4 (3)C16—C11—C12—N1−179.41 (13)
C4—C5—C6—C10.7 (2)C10—C11—C12—N11.1 (2)
C2—C1—C6—C5−1.0 (2)C16—C11—C12—C130.0 (2)
C7—C1—C6—C5174.34 (14)C10—C11—C12—C13−179.53 (13)
N2—N3—C7—O1−1.7 (2)N1—C12—C13—C14178.76 (15)
N2—N3—C7—C1−177.50 (12)C11—C12—C13—C14−0.7 (2)
C2—C1—C7—O122.1 (2)C12—C13—C14—C150.9 (3)
C6—C1—C7—O1−153.29 (15)C13—C14—C15—C16−0.3 (3)
C2—C1—C7—N3−162.04 (13)C14—C15—C16—C11−0.4 (2)
C6—C1—C7—N322.6 (2)C12—C11—C16—C150.5 (2)
N3—N2—C10—C11178.06 (11)C10—C11—C16—C15−179.94 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.862.413.1611 (15)147
N1—H1A···O1ii0.862.293.0856 (16)154
N1—H1B···N20.862.032.6626 (16)130

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2135).

References

  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008a). Acta Cryst. E64, o1907–o1908. [PMC free article] [PubMed]
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1961–o1962. [PMC free article] [PubMed]
  • Gupta, L. K., Bansal, V. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975. [PubMed]
  • Kocyigit-Kaymakcioglu, B., Oruc-Emre, E. E., Unsalan, S. & Rollas, S. (2009). Med. Chem. Res. pp. 277–286.
  • Kou, Y., Tian, J., Li, D., Gu, W., Liu, X., Yan, S., Liao, D. & Cheng, P. (2009). Dalton Trans. pp. 2374–2382. [PubMed]
  • Mahalingam, V., Chitrapriya, N., Zeller, Z. & Natarajan, K. (2009). Polyhedron, 28, 1532–1540.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Qiu, X.-Y. (2009). Acta Cryst. E65, o975. [PMC free article] [PubMed]
  • Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067. [PMC free article] [PubMed]
  • Ren, C.-G. (2009). Acta Cryst. E65, o1505–o1506. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sundaraval, K., Suresh, E. & Palaniandavar, M. (2009). Inorg. Chim. Acta, 362, 199-207.
  • Xiao, G.-J. & Wei, C. (2009). Acta Cryst. E65, o585. [PMC free article] [PubMed]
  • Yin, H. D., Chen, S. W., Li, L. W. & Wang, D. Q. (2007). Inorg. Chim. Acta, 360, 2215–2223.
  • Zhang, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett.17, 3774–3777. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography