PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m499.
Published online 2010 April 10. doi:  10.1107/S1600536810012055
PMCID: PMC2979266

Di-μ-chlorido-bis­[chlorido(dimethoxy­phenyl­phosphine)palladium(II)]

Abstract

The title compound, [Pd2Cl4(C8H11O2P)2], is binuclear and disposed about a crystallographic centre of symmetry with a Pd(...)Pd distance of 3.4662 (17) Å. It has a similar geometry to that observed in the triphenyl­phosphite and triphenyl­phosphine analogues. The Pd—P bond length is ca 0.04 Å shorter than those in mononuclear PdCl2(P(OMe)2Ph)2, possibly due to the lower trans-influence of the bridging Cl compared to a single-bonded Cl atom.

Related literature

For binuclear analogues, see: Grigsby & Nicholson (1992 [triangle]); Sui-Seng et al. (2003 [triangle]). For the related mononuclear palladium compound, see: Slawin et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m499-scheme1.jpg

Experimental

Crystal data

  • [Pd2Cl4(C8H11O2P)2]
  • M r = 694.91
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m499-efi1.jpg
  • a = 7.078 (3) Å
  • b = 8.938 (3) Å
  • c = 9.838 (5) Å
  • α = 87.54 (3)°
  • β = 89.55 (3)°
  • γ = 69.46 (2)°
  • V = 582.3 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.16 mm−1
  • T = 125 K
  • 0.21 × 0.12 × 0.09 mm

Data collection

  • Rigaku Mercury70 CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.591, T max = 0.823
  • 6130 measured reflections
  • 2087 independent reflections
  • 1993 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.075
  • S = 1.10
  • 2087 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SCXMini (Rigaku, 2006 [triangle]); cell refinement: SCXMini; data reduction: SCXMini; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure (Rigaku, 2009 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012055/br2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012055/br2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the structure of the title compound the palladium atoms are in distorted square planar environments. The Pd-Cl bondlengths vary with the shortest being the terminal Pd-Cl, the longest being the bridging Pd-Cl trans to P and the intermediate length being for bridging Pd-Cl trans to Cl. This pattern is also observed in the known analogues: the triphenylphosphine analogue (Sei-Sung et al., 2003) has Pd-P 2.2278 (6) Å, Pd-Cl(terminal) 2.2722 (7) Å, Pd-Cl (bridging trans to P) 2.4128 (6) Å and Pd-Cl (bridging trans to Cl) 2.3228 (6) Å whilst in the P(OPh)3 analogue (Grigsby & Nicholson, 1992) the values are Pd-P 2.2187 (3), Pd-Cl(terminal) 2.269 (3) Pd-Cl (bridging trans to P) 2.413 (2) Pd-Cl (bridging trans to Cl) 2.309 (2) Å. The Pd-P distance in the title compound (2.1940 (14) Å) is shorter than either of the above previously published structures.

Experimental

1 g (2.6 mmol) of bis(benzonitrile)palladium(II) dichloride was dissolved in 25 ml of dichloromethane to which 0.84 ml (5.3 mmol) of dimethyl phenylphosphonite was added. The solution was stirred at room temperature for 30 mins before being filtered and then precipitated by slow addition of hexane to give a pale yellow solid. Crystals were grown for X-ray crystallographyv ia slow diffusion of hexane into a solution of the product in dichloromethane.Yield: 0.321 g (0.46 mmol), 19 %.

Refinement

All H atoms were included in calculated positions and refined as riding atoms with Uiso(H) = 1.5 Ueq. The highest peak in the difference map is 1.09 Å from atom Pd1

Figures

Fig. 1.
The structure of the title compound with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.

Crystal data

[Pd2Cl4(C8H11O2P)2]Z = 1
Mr = 694.91F(000) = 340.00
Triclinic, P1Dx = 1.982 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.078 (3) ÅCell parameters from 2478 reflections
b = 8.938 (3) Åθ = 2.1–26.4°
c = 9.838 (5) ŵ = 2.16 mm1
α = 87.54 (3)°T = 125 K
β = 89.55 (3)°Prism, orange
γ = 69.46 (2)°0.21 × 0.12 × 0.09 mm
V = 582.3 (4) Å3

Data collection

Rigaku Mercury70 CCD diffractometer1993 reflections with F2 > 2σ(F2)
ω scansRint = 0.042
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)θmax = 25.4°
Tmin = 0.591, Tmax = 0.823h = −8→8
6130 measured reflectionsk = −10→9
2087 independent reflectionsl = −11→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0152P)2 + 1.7632P] where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.09659 (5)0.37691 (4)0.14271 (3)0.01955 (12)
Cl10.13513 (17)0.60837 (13)0.02692 (11)0.0258 (3)
Cl20.33715 (18)0.36169 (14)0.30113 (11)0.0293 (3)
P10.06174 (17)0.16984 (13)0.25330 (11)0.0196 (2)
O1−0.1234 (5)0.1371 (3)0.1902 (3)0.0247 (7)
O20.0252 (5)0.1858 (3)0.4113 (3)0.0251 (7)
C10.2737 (7)−0.0122 (5)0.2477 (4)0.0213 (9)
C20.3205 (7)−0.0794 (6)0.1210 (5)0.0278 (10)
H20.2425−0.02740.04320.033*
C30.4803 (7)−0.2215 (6)0.1083 (5)0.0337 (12)
H30.5114−0.26800.02210.040*
C40.5941 (8)−0.2954 (6)0.2212 (5)0.0340 (12)
H40.7038−0.39320.21260.041*
C50.5504 (8)−0.2288 (6)0.3467 (5)0.0352 (12)
H50.6306−0.28020.42380.042*
C60.3898 (7)−0.0872 (5)0.3604 (5)0.0275 (10)
H60.3592−0.04150.44690.033*
C7−0.1241 (8)0.3299 (5)0.4628 (5)0.0323 (11)
H7A−0.09180.42350.43130.039*
H7B−0.12260.32270.56250.039*
H7C−0.25840.34030.42930.039*
C8−0.1806 (8)0.0038 (6)0.2437 (5)0.0294 (11)
H8A−0.1043−0.09330.19670.035*
H8B−0.32530.02870.22880.035*
H8C−0.1504−0.01320.34130.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.0218 (2)0.01731 (19)0.01916 (19)−0.00664 (14)0.00007 (14)0.00122 (13)
Cl10.0318 (6)0.0231 (6)0.0250 (6)−0.0135 (5)−0.0074 (5)0.0059 (4)
Cl20.0299 (6)0.0328 (6)0.0272 (6)−0.0140 (5)−0.0073 (5)0.0044 (5)
P10.0213 (6)0.0180 (6)0.0182 (5)−0.0055 (5)0.0010 (4)0.0018 (4)
O10.0244 (17)0.0238 (17)0.0275 (17)−0.0109 (13)−0.0029 (13)0.0053 (13)
O20.0333 (19)0.0188 (16)0.0196 (15)−0.0050 (14)0.0041 (13)0.0022 (12)
C10.024 (2)0.019 (2)0.022 (2)−0.0081 (18)0.0047 (18)0.0003 (17)
C20.025 (3)0.032 (3)0.023 (2)−0.006 (2)0.0001 (19)−0.0027 (19)
C30.026 (3)0.034 (3)0.040 (3)−0.009 (2)0.005 (2)−0.011 (2)
C40.027 (3)0.023 (3)0.047 (3)−0.003 (2)0.012 (2)−0.001 (2)
C50.032 (3)0.034 (3)0.032 (3)−0.002 (2)0.000 (2)0.014 (2)
C60.028 (3)0.029 (3)0.023 (2)−0.007 (2)0.005 (2)0.0020 (19)
C70.034 (3)0.026 (3)0.033 (3)−0.005 (2)0.010 (2)−0.007 (2)
C80.033 (3)0.030 (3)0.032 (3)−0.021 (2)0.004 (2)0.000 (2)

Geometric parameters (Å, °)

Pd1—P12.1940 (14)C3—C41.379 (7)
Pd1—Cl22.2820 (15)C3—H30.9500
Pd1—Cl1i2.3163 (15)C4—C51.379 (7)
Pd1—Cl12.4170 (14)C4—H40.9500
Cl1—Pd1i2.3163 (14)C5—C61.384 (7)
P1—O11.577 (3)C5—H50.9500
P1—O21.578 (3)C6—H60.9500
P1—C11.788 (4)C7—H7A0.9800
O1—C81.463 (5)C7—H7B0.9800
O2—C71.458 (5)C7—H7C0.9800
C1—C61.384 (6)C8—H8A0.9800
C1—C21.394 (6)C8—H8B0.9800
C2—C31.383 (7)C8—H8C0.9800
C2—H20.9500
P1—Pd1—Cl286.39 (5)C2—C3—H3120.2
P1—Pd1—Cl1i95.34 (5)C5—C4—C3120.6 (4)
Cl2—Pd1—Cl1i176.98 (4)C5—C4—H4119.7
P1—Pd1—Cl1178.39 (4)C3—C4—H4119.7
Cl2—Pd1—Cl192.45 (5)C4—C5—C6120.1 (5)
Cl1i—Pd1—Cl185.86 (5)C4—C5—H5120.0
Pd1i—Cl1—Pd194.14 (5)C6—C5—H5120.0
O1—P1—O2107.39 (18)C1—C6—C5119.9 (4)
O1—P1—C1107.02 (19)C1—C6—H6120.1
O2—P1—C1101.72 (18)C5—C6—H6120.1
O1—P1—Pd1108.39 (12)O2—C7—H7A109.5
O2—P1—Pd1116.15 (12)O2—C7—H7B109.5
C1—P1—Pd1115.53 (15)H7A—C7—H7B109.5
C8—O1—P1120.3 (3)O2—C7—H7C109.5
C7—O2—P1120.0 (3)H7A—C7—H7C109.5
C6—C1—C2119.7 (4)H7B—C7—H7C109.5
C6—C1—P1123.8 (3)O1—C8—H8A109.5
C2—C1—P1116.5 (3)O1—C8—H8B109.5
C3—C2—C1120.1 (4)H8A—C8—H8B109.5
C3—C2—H2120.0O1—C8—H8C109.5
C1—C2—H2120.0H8A—C8—H8C109.5
C4—C3—C2119.7 (5)H8B—C8—H8C109.5
C4—C3—H3120.2
Cl2—Pd1—Cl1—Pd1i177.49 (4)O1—P1—C1—C6−125.2 (4)
Cl1i—Pd1—Cl1—Pd1i0.0O2—P1—C1—C6−12.7 (4)
Cl2—Pd1—P1—O1173.14 (13)Pd1—P1—C1—C6114.0 (4)
Cl1i—Pd1—P1—O1−9.34 (14)O1—P1—C1—C254.7 (4)
Cl2—Pd1—P1—O252.20 (15)O2—P1—C1—C2167.2 (3)
Cl1i—Pd1—P1—O2−130.28 (15)Pd1—P1—C1—C2−66.1 (4)
Cl2—Pd1—P1—C1−66.83 (17)C6—C1—C2—C31.0 (7)
Cl1i—Pd1—P1—C1110.69 (17)P1—C1—C2—C3−178.9 (4)
O2—P1—O1—C8−54.4 (3)C1—C2—C3—C4−0.7 (7)
C1—P1—O1—C854.1 (4)C2—C3—C4—C5−0.1 (8)
Pd1—P1—O1—C8179.4 (3)C3—C4—C5—C60.6 (8)
O1—P1—O2—C7−74.4 (4)C2—C1—C6—C5−0.5 (7)
C1—P1—O2—C7173.4 (3)P1—C1—C6—C5179.5 (4)
Pd1—P1—O2—C747.1 (4)C4—C5—C6—C1−0.3 (8)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2142).

References

  • Grigsby, W. J. & Nicholson, B. K. (1992). Acta Cryst. C48, 362–364.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2009). Crystal Structure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slawin, A. M. Z., Waddell, P. G. & Woollins, J. D. (2010). Acta Cryst. E66, m321. [PMC free article] [PubMed]
  • Sui-Seng, C., Bélanger-Gariépy, F. & Zargarian, D. (2003). Acta Cryst. E59, m618–m619.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography