PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1124.
Published online 2010 April 21. doi:  10.1107/S1600536810013917
PMCID: PMC2979255

3-(2H-Benzotriazol-2-yl)-1-(4-fluoro­phen­yl)propan-1-one

Abstract

In the title compound, C15H12FN3O, the benzotriazole ring system is essentially planar, with a maximum deviation from the least-squares plane of 0.016 (3) Å. The dihedral angle between this ring system and the fluoro-substituted benzene ring is 67.97 (2)°. The crystal structure is stabilized by weak inter­molecular C—H(...)N inter­actions.

Related literature

For applications of benzotriazole derivatives, see: Chen & Wu (2005 [triangle]). For standard bond distances, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1124-scheme1.jpg

Experimental

Crystal data

  • C15H12FN3O
  • M r = 269.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1124-efi1.jpg
  • a = 5.7858 (12) Å
  • b = 5.6814 (11) Å
  • c = 19.313 (4) Å
  • β = 90.77 (3)°
  • V = 634.8 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 3943 measured reflections
  • 1240 independent reflections
  • 1122 reflections with I > 2σ(I)
  • R int = 0.135

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.210
  • S = 1.07
  • 1240 reflections
  • 181 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013917/lh5027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013917/lh5027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1H-Benzotriazole and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu., 2005). 1H and 2H-Benzotriazole are tautomers. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with potential bioactivity. All bond lengths (Allen et al., 1987) and angles in (I) are within normal ranges. The benzotriazole ring system is essentially planar with a maximum deviation from the least squares plane of 0.016 (3)Å. The dihedral angle between this ring system and the fluro substituted benzene ring is 67.97 (2). The crystal structure is stabilized by weak intermolecular C—H···N interactions.

Experimental

To a solution of 1-(4-ethylphenyl)-3-(dimethylamino)propan-1-one (12.05 g, 0.05 mol) in water (25 ml) was added benzotriazole (7.1 g, 0.06 mol). The mixture was heated under reflux for 5 h. The solution was filtered,concentrated and purified by flash chromatography (silica gel,using petroleum ether-ethylacetate(4:1 v/v). to afford the title compound. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a ethanol solution over a period of 5 d.

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) .

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids.
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

Crystal data

C15H12FN3OF(000) = 280
Mr = 269.28Dx = 1.409 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1874 reflections
a = 5.7858 (12) Åθ = 1.1–25.0°
b = 5.6814 (11) ŵ = 0.10 mm1
c = 19.313 (4) ÅT = 293 K
β = 90.77 (3)°Block, colorless
V = 634.8 (2) Å30.20 × 0.18 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.135
graphiteθmax = 25.0°, θmin = 1.1°
[var phi] and ω scansh = −6→6
3943 measured reflectionsk = −6→6
1240 independent reflectionsl = −22→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1432P)2 + 0.1388P] where P = (Fo2 + 2Fc2)/3
1240 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F0.0574 (7)1.0117 (7)0.01386 (19)0.0505 (11)
O0.9115 (8)1.3049 (7)0.1980 (2)0.0434 (12)
N11.3671 (7)0.6871 (8)0.3093 (2)0.0278 (10)
N21.0658 (8)0.6958 (8)0.3810 (2)0.0300 (10)
N31.1720 (8)0.7892 (8)0.3293 (2)0.0265 (10)
C91.3499 (10)0.1759 (10)0.4572 (3)0.0316 (13)
H9A1.34020.06090.49130.038*
C150.8110 (10)1.1189 (10)0.1966 (3)0.0300 (13)
C140.8827 (10)0.9205 (9)0.2440 (3)0.0292 (12)
H14A0.92700.78560.21640.035*
H14B0.75240.87460.27200.035*
C121.3905 (9)0.5068 (10)0.3556 (3)0.0274 (12)
C50.6140 (11)1.0790 (10)0.1461 (3)0.0326 (13)
C131.0823 (9)0.9904 (10)0.2907 (3)0.0293 (12)
H13A1.20471.05710.26300.035*
H13B1.03151.11030.32290.035*
C111.2016 (9)0.5119 (10)0.4001 (3)0.0276 (12)
C20.2439 (10)1.0338 (10)0.0570 (3)0.0344 (14)
C60.5609 (10)1.2550 (10)0.0984 (3)0.0315 (13)
H6A0.65281.38910.09660.038*
C101.1818 (10)0.3418 (10)0.4533 (3)0.0285 (12)
H10A1.05950.34380.48410.034*
C81.5400 (10)0.1698 (10)0.4116 (3)0.0336 (13)
H8A1.64980.05120.41640.040*
C30.2883 (12)0.8551 (12)0.1038 (3)0.0416 (15)
H3A0.19450.72230.10500.050*
C40.4757 (11)0.8775 (10)0.1490 (3)0.0356 (14)
H4A0.50900.75940.18090.043*
C71.5654 (10)0.3346 (10)0.3607 (3)0.0309 (12)
H7A1.69100.33320.33110.037*
C10.3754 (11)1.2338 (10)0.0540 (3)0.0376 (15)
H1B0.33951.35260.02260.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F0.048 (2)0.046 (2)0.057 (2)0.0034 (19)−0.0271 (17)−0.0036 (19)
O0.048 (3)0.026 (2)0.056 (3)−0.007 (2)−0.019 (2)0.006 (2)
N10.027 (2)0.025 (2)0.031 (3)0.001 (2)−0.0019 (17)0.0008 (19)
N20.027 (2)0.021 (2)0.042 (3)−0.001 (2)−0.0053 (18)−0.002 (2)
N30.028 (2)0.020 (2)0.032 (3)0.0000 (18)−0.0043 (18)−0.0002 (19)
C90.040 (3)0.025 (3)0.029 (3)−0.010 (3)−0.012 (2)0.006 (2)
C150.030 (3)0.022 (3)0.037 (3)0.001 (2)−0.004 (2)−0.004 (2)
C140.033 (3)0.023 (3)0.032 (3)0.001 (2)0.000 (2)−0.002 (2)
C120.030 (3)0.020 (2)0.032 (3)−0.002 (2)−0.010 (2)0.004 (2)
C50.038 (3)0.025 (3)0.035 (3)0.002 (2)−0.004 (2)−0.005 (2)
C130.028 (3)0.020 (2)0.040 (3)0.000 (2)−0.011 (2)−0.001 (2)
C110.028 (3)0.021 (2)0.034 (3)−0.011 (2)−0.009 (2)0.002 (2)
C20.032 (3)0.039 (3)0.031 (3)0.011 (3)−0.008 (2)−0.007 (3)
C60.035 (3)0.026 (3)0.034 (3)0.004 (2)−0.005 (2)0.006 (2)
C100.032 (3)0.027 (3)0.026 (3)−0.008 (2)−0.0030 (19)−0.001 (2)
C80.036 (3)0.027 (3)0.038 (3)−0.004 (2)−0.012 (2)0.001 (3)
C30.044 (4)0.030 (3)0.050 (4)−0.007 (3)−0.010 (3)−0.002 (3)
C40.042 (3)0.030 (3)0.035 (3)−0.003 (3)−0.007 (2)−0.001 (3)
C70.028 (3)0.024 (3)0.040 (3)0.000 (2)−0.009 (2)−0.006 (2)
C10.043 (4)0.025 (3)0.044 (4)0.010 (3)−0.010 (3)0.009 (2)

Geometric parameters (Å, °)

F—C21.360 (7)C5—C61.390 (8)
O—C151.207 (7)C5—C41.399 (9)
N1—N31.331 (7)C13—H13A0.9700
N1—C121.364 (7)C13—H13B0.9700
N2—N31.293 (7)C11—C101.416 (8)
N2—C111.356 (7)C2—C11.369 (9)
N3—C131.457 (7)C2—C31.381 (9)
C9—C101.356 (8)C6—C11.370 (9)
C9—C81.419 (9)C6—H6A0.9300
C9—H9A0.9300C10—H10A0.9300
C15—C141.506 (7)C8—C71.367 (9)
C15—C51.508 (7)C8—H8A0.9300
C14—C131.510 (7)C3—C41.388 (9)
C14—H14A0.9700C3—H3A0.9300
C14—H14B0.9700C4—H4A0.9300
C12—C111.400 (8)C7—H7A0.9300
C12—C71.410 (8)C1—H1B0.9300
N3—N1—C12102.4 (4)H13A—C13—H13B108.0
N3—N2—C11104.3 (5)N2—C11—C12107.7 (5)
N2—N3—N1117.3 (4)N2—C11—C10132.1 (5)
N2—N3—C13123.2 (5)C12—C11—C10120.2 (5)
N1—N3—C13119.4 (5)F—C2—C1119.2 (5)
C10—C9—C8122.9 (5)F—C2—C3118.2 (5)
C10—C9—H9A118.5C1—C2—C3122.6 (5)
C8—C9—H9A118.5C1—C6—C5121.0 (5)
O—C15—C14120.9 (5)C1—C6—H6A119.5
O—C15—C5120.4 (5)C5—C6—H6A119.5
C14—C15—C5118.7 (5)C9—C10—C11116.7 (5)
C15—C14—C13111.6 (5)C9—C10—H10A121.6
C15—C14—H14A109.3C11—C10—H10A121.6
C13—C14—H14A109.3C7—C8—C9121.5 (5)
C15—C14—H14B109.3C7—C8—H8A119.3
C13—C14—H14B109.3C9—C8—H8A119.3
H14A—C14—H14B108.0C4—C3—C2118.7 (6)
N1—C12—C11108.4 (5)C4—C3—H3A120.6
N1—C12—C7129.2 (5)C2—C3—H3A120.6
C11—C12—C7122.4 (5)C3—C4—C5119.5 (6)
C6—C5—C4119.6 (5)C3—C4—H4A120.2
C6—C5—C15118.6 (5)C5—C4—H4A120.2
C4—C5—C15121.7 (5)C8—C7—C12116.2 (6)
N3—C13—C14111.3 (5)C8—C7—H7A121.9
N3—C13—H13A109.4C12—C7—H7A121.9
C14—C13—H13A109.4C2—C1—C6118.6 (5)
N3—C13—H13B109.4C2—C1—H1B120.7
C14—C13—H13B109.4C6—C1—H1B120.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.972.583.511 (3)161

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5027).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett.7, 475–477. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography