PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m551.
Published online 2010 April 21. doi:  10.1107/S1600536810013553
PMCID: PMC2979253

Poly[dimethano­lbis[μ-5-(3-pyrid­yl)tetra­zolato-κ2 N 2:N 5]copper(II)]

Abstract

In the crystal structure of the title complex, [Cu(C6H4N5)2(CH3OH)2]n, the CuII cation lies on an inversion center and is coordinated by four 5-(3-pyrid­yl)tetra­zolate anions and two methanol mol­ecules in an elongated distorted CuN4O2 octa­hedral geometry. Each 5-(3-pyrid­yl)tetra­zolate anion bridges two CuII cations, forming a two-dimensional polymeric complex with (4,4) network topology. In the crystal structure, the two-dimensional layers are connected by inter­molecular O—H(...)N hydrogen bonding, forming a three-dimensional supra­molecular architecture.

Related literature

For background to 5-(3-pyrid­yl)tetra­zolate complexes, see: Fu et al. (2008 [triangle]); Wang et al. (2005 [triangle]). For the structure of a related polymeric metal complex with a 5-(3-pyrid­yl)tetra­zolate bridging ligand, see: Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m551-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H4N5)2(CH4O)2]
  • M r = 419.91
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m551-efi1.jpg
  • a = 13.553 (3) Å
  • b = 9.1756 (18) Å
  • c = 14.264 (3) Å
  • V = 1773.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 298 K
  • 0.35 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.712, T max = 0.776
  • 10117 measured reflections
  • 2142 independent reflections
  • 1609 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.102
  • S = 1.00
  • 2142 reflections
  • 126 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013553/xu2736sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013553/xu2736Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent years, there has been great interest in the study of metal-organic coordination polymers with network structures due to their possible chemical and physicalproperties. Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, dueing to its various coordination modes (Wang et al., 2005; Fu et al., 2008; Zhang et al., 2006)). We report here the crystal structure of the title compound.

The crystallographically asymmetric unit contains a half CuII ion, one 5-(3-pyridyl)tetrazolate (3-ptz) ligand and one methanol molecule. Each ligand adopts a bidentate bridging spacer to link two Cu centers. Upon the same bridging fashion, all CuII atoms are linked by ligands into a infinite 2D grid network with Cu···Cu separation of 8.480 (2) Å. In additon, the pyridyl and tetrazolate rings are almost coplanar, with a dihedral angle of 2.535 (7)°. The bond distances between Cu and N atoms are in the range of 2.017 (2)-2.055 (2) Å. There is intermolecular O—H···N hydrogen bond inginteractions involving the hydroxyl of methanol and nitrogen of 3-ptz ligand, which links the 2D layers into a 3D supramolecular architecture.

Experimental

A mixture of 3-(2H-tetrazol-5-yl)pyridine(0.2 mmol, 0.0294 g),Cu(CH3COO)2.H2O (0.4 mmol, 0.0799 g), methanol (5 ml) and distilled water (10 ml) were sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 423 K for three days, and then cooled slowly to 298 K at which time blue crystals were obtained.

Refinement

H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å, O—H = 0.82 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C,O) for the others.

Figures

Fig. 1.
Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x+1,y-1/2,-z+3/2; (B) x,-y+1/2,z-1/2; (C) -x+1,-y,-z+1.]
Fig. 2.
The 2D sheet of the title compound, viewed along the a axis.

Crystal data

[Cu(C6H4N5)2(CH4O)2]F(000) = 860
Mr = 419.91Dx = 1.572 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3436 reflections
a = 13.553 (3) Åθ = 3.0–28.4°
b = 9.1756 (18) ŵ = 1.27 mm1
c = 14.264 (3) ÅT = 298 K
V = 1773.8 (6) Å3Prism, blue
Z = 40.35 × 0.23 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer2142 independent reflections
Radiation source: fine-focus sealed tube1609 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→15
Tmin = 0.712, Tmax = 0.776k = −11→10
10117 measured reflectionsl = −10→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.063P)2 + 0.5194P] where P = (Fo2 + 2Fc2)/3
2142 reflections(Δ/σ)max = 0.006
126 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.50000.02552 (13)
N10.40143 (12)0.49681 (14)0.89055 (11)0.0268 (3)
N20.43581 (11)0.21166 (17)0.65120 (11)0.0322 (4)
C40.34156 (12)0.39225 (18)0.74718 (13)0.0271 (4)
C60.35651 (13)0.29258 (19)0.66749 (12)0.0273 (4)
N30.41335 (10)0.13933 (17)0.57196 (11)0.0289 (3)
N50.28715 (12)0.2724 (2)0.60197 (12)0.0400 (4)
C50.41360 (13)0.41125 (19)0.81498 (12)0.0278 (4)
H50.47330.36240.80780.033*
C10.31558 (14)0.5690 (2)0.89861 (14)0.0356 (4)
H10.30650.62990.95000.043*
C20.24063 (16)0.5566 (3)0.83412 (14)0.0417 (5)
H20.18220.60810.84210.050*
N40.32433 (12)0.17505 (19)0.54228 (12)0.0397 (4)
C30.25302 (14)0.4669 (3)0.75747 (13)0.0381 (5)
H30.20300.45660.71340.046*
O10.58452 (9)0.21181 (15)0.42449 (11)0.0392 (3)
H1A0.64260.20840.40850.047*
C70.5580 (2)0.3571 (3)0.4431 (3)0.0756 (10)
H7A0.48740.36580.44300.113*
H7B0.58530.41940.39560.113*
H7C0.58320.38530.50330.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0267 (2)0.0285 (2)0.02140 (19)0.00631 (11)−0.00140 (11)−0.00145 (11)
N10.0310 (8)0.0256 (8)0.0238 (7)−0.0035 (6)−0.0006 (6)0.0000 (6)
N20.0308 (7)0.0373 (9)0.0286 (8)0.0049 (7)−0.0035 (6)−0.0083 (7)
C40.0300 (8)0.0257 (8)0.0257 (8)0.0025 (7)0.0001 (7)−0.0014 (7)
C60.0268 (8)0.0289 (9)0.0261 (8)0.0016 (7)−0.0026 (7)−0.0013 (7)
N30.0270 (7)0.0322 (8)0.0274 (7)0.0030 (6)−0.0025 (6)−0.0029 (6)
N50.0332 (8)0.0492 (10)0.0376 (9)0.0138 (7)−0.0090 (7)−0.0173 (8)
C50.0268 (8)0.0290 (9)0.0275 (9)0.0017 (7)0.0011 (7)−0.0004 (7)
C10.0423 (10)0.0348 (10)0.0296 (10)0.0069 (9)−0.0016 (8)−0.0063 (8)
C20.0411 (11)0.0452 (12)0.0387 (11)0.0195 (10)−0.0063 (9)−0.0102 (9)
N40.0328 (8)0.0480 (10)0.0382 (9)0.0121 (7)−0.0076 (7)−0.0149 (8)
C30.0361 (11)0.0442 (11)0.0339 (11)0.0122 (8)−0.0109 (9)−0.0082 (8)
O10.0296 (7)0.0388 (8)0.0492 (9)−0.0034 (6)−0.0003 (6)0.0014 (6)
C70.0670 (17)0.0381 (14)0.122 (3)0.0021 (13)0.0290 (18)0.0100 (15)

Geometric parameters (Å, °)

Cu1—N1i2.0549 (16)C6—N51.338 (2)
Cu1—N1ii2.0549 (16)N3—N41.320 (2)
Cu1—N32.0167 (15)N5—N41.333 (2)
Cu1—N3iii2.0167 (15)C5—H50.9300
Cu1—O12.4999 (15)C1—C21.375 (3)
Cu1—O1iii2.4999 (15)C1—H10.9300
N1—C51.344 (2)C2—C31.378 (3)
N1—C11.344 (2)C2—H20.9300
N1—Cu1iv2.0549 (16)C3—H30.9300
N2—C61.327 (2)O1—C71.406 (3)
N2—N31.346 (2)O1—H1A0.8200
C4—C51.385 (2)C7—H7A0.9600
C4—C31.390 (2)C7—H7B0.9600
C4—C61.473 (2)C7—H7C0.9600
N3—Cu1—N3iii180.00 (7)N1—C5—C4123.17 (16)
N3—Cu1—N1i90.06 (6)N1—C5—H5118.4
N3iii—Cu1—N1i89.94 (6)C4—C5—H5118.4
N3—Cu1—N1ii89.94 (6)N1—C1—C2122.80 (18)
N3iii—Cu1—N1ii90.06 (6)N1—C1—H1118.6
N1i—Cu1—N1ii180.0C2—C1—H1118.6
C5—N1—C1117.57 (16)C3—C2—C1119.33 (18)
C5—N1—Cu1iv122.55 (12)C3—C2—H2120.3
C1—N1—Cu1iv119.40 (13)C1—C2—H2120.3
C6—N2—N3103.87 (14)N3—N4—N5107.89 (15)
C5—C4—C3118.22 (16)C2—C3—C4118.89 (17)
C5—C4—C6121.33 (16)C2—C3—H3120.6
C3—C4—C6120.42 (16)C4—C3—H3120.6
N2—C6—N5111.67 (15)C7—O1—H1A109.5
N2—C6—C4126.44 (16)O1—C7—H7A109.5
N5—C6—C4121.88 (16)O1—C7—H7B109.5
N4—N3—N2110.72 (14)H7A—C7—H7B109.5
N4—N3—Cu1121.77 (12)O1—C7—H7C109.5
N2—N3—Cu1127.47 (11)H7A—C7—H7C109.5
N4—N5—C6105.85 (15)H7B—C7—H7C109.5
N3—N2—C6—N50.1 (2)C4—C6—N5—N4−179.06 (17)
N3—N2—C6—C4179.14 (17)C1—N1—C5—C4−1.4 (3)
C5—C4—C6—N20.5 (3)Cu1iv—N1—C5—C4170.55 (13)
C3—C4—C6—N2−177.71 (19)C3—C4—C5—N10.8 (3)
C5—C4—C6—N5179.43 (18)C6—C4—C5—N1−177.41 (16)
C3—C4—C6—N51.2 (3)C5—N1—C1—C21.1 (3)
C6—N2—N3—N4−0.2 (2)Cu1iv—N1—C1—C2−171.19 (17)
C6—N2—N3—Cu1177.41 (12)N1—C1—C2—C3−0.1 (4)
N3iii—Cu1—N3—N412 (76)N2—N3—N4—N50.2 (2)
N1i—Cu1—N3—N4−171.52 (15)Cu1—N3—N4—N5−177.56 (13)
N1ii—Cu1—N3—N48.48 (15)C6—N5—N4—N3−0.1 (2)
N3iii—Cu1—N3—N2−165 (76)C1—C2—C3—C4−0.5 (4)
N1i—Cu1—N3—N211.10 (15)C5—C4—C3—C20.2 (3)
N1ii—Cu1—N3—N2−168.90 (15)C6—C4—C3—C2178.4 (2)
N2—C6—N5—N40.0 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N5v0.821.972.776 (2)166

Symmetry codes: (v) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2736).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des 8, 3461–3464.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem 44, 5278–5285. [PubMed]
  • Zhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908–m2909.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography