PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1110.
Published online 2010 April 17. doi:  10.1107/S1600536810013784
PMCID: PMC2979249

(2E)-3-(4-Bromo­phen­yl)-1-(2-methyl-4-phenyl-3-quinol­yl)prop-2-en-1-one

Abstract

The conformation about the ethene bond [1.316 (3) Å] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)° with the benzene and bromo-substituted benzene rings, respectively. Highlighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)°.

Related literature

For general background to quinoline derivatives, see: Morimoto et al. (1991 [triangle]); Michael (1997 [triangle]); Markees et al. (1970 [triangle]); Campbell et al. (1998 [triangle]); Maguire et al. (1994 [triangle]); Kalluraya & Sreenivasa (1998 [triangle]); Roma et al. (2000 [triangle]); Chen et al. (2001 [triangle]). For inter­est in the biological activities of chalcones, see: Dimmock et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1110-scheme1.jpg

Experimental

Crystal data

  • C25H18BrNO
  • M r = 428.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1110-efi1.jpg
  • a = 6.6407 (3) Å
  • b = 10.0395 (4) Å
  • c = 15.5193 (6) Å
  • α = 92.192 (2)°
  • β = 95.234 (2)°
  • γ = 105.869 (2)°
  • V = 988.92 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.09 mm−1
  • T = 293 K
  • 0.28 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.596, T max = 0.746
  • 15973 measured reflections
  • 3470 independent reflections
  • 2545 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.083
  • S = 1.01
  • 3470 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013784/hg2673sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013784/hg2673Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the chalcones, also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and crystal structure of a molecule containing both quinoline and chalcone groups, (I).

In the structure of (I), the conformation about the C17═C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.

Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.

Experimental

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g 0.01 M) and 4-bromobenzaldehyde (1.84 g 0.01 M), and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured onto ice, and neutralized with dilute acetic acid. The resultant solid was filtered, dried, purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate; yield: 65 % and m.pt: 459 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Crystal data

C25H18BrNOZ = 2
Mr = 428.31F(000) = 436
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6407 (3) ÅCell parameters from 4795 reflections
b = 10.0395 (4) Åθ = 2.6–23.7°
c = 15.5193 (6) ŵ = 2.09 mm1
α = 92.192 (2)°T = 293 K
β = 95.234 (2)°Plate, colourless
γ = 105.869 (2)°0.28 × 0.21 × 0.14 mm
V = 988.92 (7) Å3

Data collection

Bruker SMART APEX CCD diffractometer3470 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −7→7
Tmin = 0.596, Tmax = 0.746k = −11→11
15973 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3122P] where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.08613 (5)0.24943 (4)0.49005 (2)0.08720 (16)
O11.1467 (3)0.65490 (17)0.15079 (12)0.0608 (5)
N10.7271 (3)0.91386 (18)0.04962 (12)0.0419 (4)
C10.8532 (3)1.0419 (2)0.07979 (14)0.0377 (5)
C20.8037 (4)1.1593 (2)0.04646 (15)0.0475 (6)
H20.69091.14790.00400.057*
C30.9207 (4)1.2891 (2)0.07632 (17)0.0540 (6)
H30.88681.36580.05410.065*
C41.0909 (4)1.3087 (2)0.13987 (16)0.0527 (6)
H41.16851.39820.15980.063*
C51.1440 (4)1.1977 (2)0.17279 (14)0.0431 (5)
H51.25831.21190.21480.052*
C61.0268 (3)1.0609 (2)0.14360 (13)0.0348 (5)
C71.0703 (3)0.9398 (2)0.17656 (13)0.0344 (5)
C80.9391 (3)0.8119 (2)0.14548 (14)0.0361 (5)
C90.7675 (3)0.8033 (2)0.08138 (14)0.0395 (5)
C101.2501 (3)0.9522 (2)0.24382 (13)0.0361 (5)
C111.4566 (4)1.0046 (3)0.22479 (16)0.0522 (6)
H111.48331.03350.16970.063*
C121.6221 (4)1.0137 (3)0.28757 (19)0.0627 (7)
H121.75971.04860.27430.075*
C131.5861 (4)0.9721 (3)0.36906 (18)0.0591 (7)
H131.69840.97830.41090.071*
C141.3823 (4)0.9209 (3)0.38841 (16)0.0563 (6)
H141.35680.89210.44360.068*
C151.2162 (4)0.9120 (2)0.32667 (14)0.0451 (5)
H151.07910.87840.34090.054*
C160.9910 (4)0.6815 (2)0.17362 (15)0.0433 (5)
C170.8555 (4)0.5880 (2)0.22805 (16)0.0488 (6)
H170.88540.50470.23910.059*
C180.6945 (4)0.6130 (2)0.26255 (15)0.0457 (6)
H180.66600.69640.25030.055*
C190.5548 (3)0.5238 (2)0.31818 (15)0.0444 (5)
C200.3842 (4)0.5633 (3)0.34362 (17)0.0547 (6)
H200.36210.64610.32580.066*
C210.2463 (4)0.4832 (3)0.39470 (17)0.0602 (7)
H210.13210.51120.41100.072*
C220.2791 (4)0.3614 (3)0.42126 (16)0.0524 (6)
C230.4469 (4)0.3192 (3)0.39775 (17)0.0580 (7)
H230.46800.23650.41610.070*
C240.5839 (4)0.4003 (2)0.34676 (17)0.0550 (6)
H240.69840.37190.33110.066*
C260.6217 (4)0.6658 (2)0.04495 (17)0.0538 (6)
H26A0.51030.63640.08130.081*
H26B0.69900.59790.04300.081*
H26C0.56300.6755−0.01260.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0736 (2)0.0933 (3)0.0832 (2)−0.00470 (17)0.02395 (17)0.03235 (18)
O10.0616 (11)0.0476 (10)0.0839 (13)0.0264 (8)0.0242 (10)0.0157 (9)
N10.0385 (10)0.0394 (11)0.0463 (11)0.0092 (8)0.0020 (8)0.0015 (9)
C10.0377 (11)0.0369 (13)0.0403 (12)0.0122 (10)0.0072 (10)0.0035 (10)
C20.0487 (13)0.0461 (15)0.0498 (14)0.0180 (11)−0.0005 (11)0.0081 (11)
C30.0643 (16)0.0394 (14)0.0637 (16)0.0230 (12)0.0047 (13)0.0121 (12)
C40.0617 (15)0.0318 (13)0.0623 (16)0.0101 (11)0.0052 (13)−0.0014 (11)
C50.0463 (12)0.0377 (13)0.0433 (13)0.0099 (10)0.0007 (10)0.0001 (10)
C60.0382 (11)0.0316 (12)0.0363 (12)0.0102 (9)0.0106 (9)0.0029 (9)
C70.0337 (11)0.0359 (12)0.0355 (11)0.0104 (9)0.0099 (9)0.0041 (9)
C80.0365 (11)0.0323 (12)0.0402 (12)0.0088 (9)0.0095 (10)0.0049 (9)
C90.0383 (11)0.0347 (12)0.0446 (13)0.0079 (9)0.0080 (10)0.0004 (10)
C100.0407 (12)0.0288 (11)0.0399 (12)0.0116 (9)0.0046 (10)0.0006 (9)
C110.0430 (13)0.0664 (16)0.0482 (14)0.0145 (12)0.0112 (12)0.0039 (12)
C120.0369 (13)0.0794 (19)0.0726 (19)0.0188 (13)0.0062 (13)−0.0074 (15)
C130.0556 (16)0.0624 (17)0.0600 (18)0.0249 (13)−0.0123 (13)−0.0056 (13)
C140.0676 (17)0.0538 (15)0.0437 (14)0.0131 (13)−0.0052 (13)0.0080 (11)
C150.0448 (13)0.0447 (13)0.0422 (13)0.0059 (10)0.0050 (11)0.0061 (10)
C160.0461 (13)0.0340 (12)0.0482 (14)0.0087 (10)0.0048 (11)0.0029 (10)
C170.0563 (14)0.0332 (13)0.0579 (15)0.0122 (11)0.0097 (12)0.0089 (11)
C180.0529 (14)0.0315 (12)0.0524 (14)0.0111 (10)0.0051 (12)0.0043 (10)
C190.0467 (13)0.0358 (13)0.0469 (14)0.0058 (10)0.0025 (11)0.0035 (10)
C200.0575 (15)0.0472 (14)0.0639 (16)0.0184 (12)0.0138 (13)0.0121 (12)
C210.0506 (15)0.0665 (18)0.0658 (17)0.0163 (13)0.0162 (13)0.0077 (14)
C220.0493 (14)0.0513 (15)0.0471 (14)−0.0020 (12)0.0036 (11)0.0073 (11)
C230.0620 (16)0.0439 (14)0.0653 (17)0.0088 (12)0.0061 (13)0.0146 (12)
C240.0489 (14)0.0479 (15)0.0687 (17)0.0117 (11)0.0122 (13)0.0087 (13)
C260.0485 (13)0.0431 (14)0.0615 (16)0.0026 (11)−0.0037 (12)−0.0033 (12)

Geometric parameters (Å, °)

Br1—C221.897 (2)C12—H120.9300
O1—C161.215 (3)C13—C141.375 (4)
N1—C91.314 (3)C13—H130.9300
N1—C11.367 (3)C14—C151.375 (3)
C1—C21.411 (3)C14—H140.9300
C1—C61.415 (3)C15—H150.9300
C2—C31.360 (3)C16—C171.463 (3)
C2—H20.9300C17—C181.316 (3)
C3—C41.396 (3)C17—H170.9300
C3—H30.9300C18—C191.469 (3)
C4—C51.361 (3)C18—H180.9300
C4—H40.9300C19—C201.383 (3)
C5—C61.415 (3)C19—C241.389 (3)
C5—H50.9300C20—C211.376 (3)
C6—C71.427 (3)C20—H200.9300
C7—C81.380 (3)C21—C221.371 (4)
C7—C101.487 (3)C21—H210.9300
C8—C91.424 (3)C22—C231.369 (4)
C8—C161.513 (3)C23—C241.376 (3)
C9—C261.507 (3)C23—H230.9300
C10—C151.382 (3)C24—H240.9300
C10—C111.392 (3)C26—H26A0.9600
C11—C121.381 (3)C26—H26B0.9600
C11—H110.9300C26—H26C0.9600
C12—C131.368 (4)
C9—N1—C1118.80 (18)C15—C14—C13120.4 (2)
N1—C1—C2117.86 (19)C15—C14—H14119.8
N1—C1—C6122.80 (18)C13—C14—H14119.8
C2—C1—C6119.33 (19)C14—C15—C10120.9 (2)
C3—C2—C1120.1 (2)C14—C15—H15119.6
C3—C2—H2120.0C10—C15—H15119.6
C1—C2—H2120.0O1—C16—C17120.1 (2)
C2—C3—C4121.0 (2)O1—C16—C8119.41 (19)
C2—C3—H3119.5C17—C16—C8120.4 (2)
C4—C3—H3119.5C18—C17—C16125.0 (2)
C5—C4—C3120.4 (2)C18—C17—H17117.5
C5—C4—H4119.8C16—C17—H17117.5
C3—C4—H4119.8C17—C18—C19127.3 (2)
C4—C5—C6120.5 (2)C17—C18—H18116.4
C4—C5—H5119.7C19—C18—H18116.4
C6—C5—H5119.7C20—C19—C24117.6 (2)
C5—C6—C1118.67 (18)C20—C19—C18119.0 (2)
C5—C6—C7123.60 (19)C24—C19—C18123.4 (2)
C1—C6—C7117.71 (18)C21—C20—C19121.6 (2)
C8—C7—C6118.19 (19)C21—C20—H20119.2
C8—C7—C10121.31 (18)C19—C20—H20119.2
C6—C7—C10120.49 (18)C20—C21—C22119.2 (2)
C7—C8—C9120.04 (18)C20—C21—H21120.4
C7—C8—C16119.47 (18)C22—C21—H21120.4
C9—C8—C16120.24 (18)C23—C22—C21120.9 (2)
N1—C9—C8122.44 (19)C23—C22—Br1119.93 (19)
N1—C9—C26115.76 (19)C21—C22—Br1119.18 (19)
C8—C9—C26121.80 (19)C22—C23—C24119.4 (2)
C15—C10—C11118.4 (2)C22—C23—H23120.3
C15—C10—C7120.84 (19)C24—C23—H23120.3
C11—C10—C7120.77 (19)C23—C24—C19121.3 (2)
C12—C11—C10120.1 (2)C23—C24—H24119.3
C12—C11—H11119.9C19—C24—H24119.3
C10—C11—H11119.9C9—C26—H26A109.5
C13—C12—C11120.8 (2)C9—C26—H26B109.5
C13—C12—H12119.6H26A—C26—H26B109.5
C11—C12—H12119.6C9—C26—H26C109.5
C12—C13—C14119.3 (2)H26A—C26—H26C109.5
C12—C13—H13120.3H26B—C26—H26C109.5
C14—C13—H13120.3
C9—N1—C1—C2−178.4 (2)C8—C7—C10—C11114.2 (2)
C9—N1—C1—C60.4 (3)C6—C7—C10—C11−67.0 (3)
N1—C1—C2—C3178.0 (2)C15—C10—C11—C120.8 (3)
C6—C1—C2—C3−0.7 (3)C7—C10—C11—C12−179.1 (2)
C1—C2—C3—C40.1 (4)C10—C11—C12—C13−0.2 (4)
C2—C3—C4—C50.5 (4)C11—C12—C13—C14−0.2 (4)
C3—C4—C5—C6−0.5 (4)C12—C13—C14—C15−0.2 (4)
C4—C5—C6—C1−0.2 (3)C13—C14—C15—C100.9 (4)
C4—C5—C6—C7−178.5 (2)C11—C10—C15—C14−1.2 (3)
N1—C1—C6—C5−177.97 (19)C7—C10—C15—C14178.7 (2)
C2—C1—C6—C50.8 (3)C7—C8—C16—O1−66.9 (3)
N1—C1—C6—C70.5 (3)C9—C8—C16—O1107.3 (2)
C2—C1—C6—C7179.20 (19)C7—C8—C16—C17112.9 (2)
C5—C6—C7—C8177.32 (19)C9—C8—C16—C17−72.8 (3)
C1—C6—C7—C8−1.0 (3)O1—C16—C17—C18173.7 (2)
C5—C6—C7—C10−1.5 (3)C8—C16—C17—C18−6.1 (4)
C1—C6—C7—C10−179.90 (18)C16—C17—C18—C19−179.4 (2)
C6—C7—C8—C90.8 (3)C17—C18—C19—C20−175.6 (2)
C10—C7—C8—C9179.66 (18)C17—C18—C19—C244.1 (4)
C6—C7—C8—C16175.09 (18)C24—C19—C20—C21−0.6 (4)
C10—C7—C8—C16−6.1 (3)C18—C19—C20—C21179.1 (2)
C1—N1—C9—C8−0.6 (3)C19—C20—C21—C220.2 (4)
C1—N1—C9—C26−179.99 (19)C20—C21—C22—C230.1 (4)
C7—C8—C9—N10.0 (3)C20—C21—C22—Br1−178.94 (19)
C16—C8—C9—N1−174.19 (19)C21—C22—C23—C240.0 (4)
C7—C8—C9—C26179.3 (2)Br1—C22—C23—C24179.02 (19)
C16—C8—C9—C265.1 (3)C22—C23—C24—C19−0.4 (4)
C8—C7—C10—C15−65.7 (3)C20—C19—C24—C230.7 (4)
C6—C7—C10—C15113.1 (2)C18—C19—C24—C23−179.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2673).

References

  • Bruker (1998). SADABS Bruker AXS Inc., Maddison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem 31, 1031–1035. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem 44, 2374–2377. [PubMed]
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem 6, 1125–1149. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404. [PubMed]
  • Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem 37, 2129–2137. [PubMed]
  • Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem 13, 324–326. [PubMed]
  • Michael, J. P. (1997). Nat. Prod. Rep 14, 605–608.
  • Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  • Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem 35, 1021–1026. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography