PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1091.
Published online 2010 April 17. doi:  10.1107/S1600536810013395
PMCID: PMC2979248

N′-(2,5-Dihydroxy­benzyl­idene)-2-hydr­oxy-3-methyl­benzohydrazide

Abstract

In the title compound, C15H14N2O4, the dihedral angle between the two benzene rings is 4.1 (2)°. The mol­ecule adopts an E configuration with respect to the C=N bond. There are intra­molecular O—H(...)N and O—H(...)O hydrogen bonds in the mol­ecule. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O and O—H(...)O hydrogen bonds, forming chains running along the c axis.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010 [triangle]); Cukurovali et al. (2006 [triangle]). For the crystal structures of hydrazones, see: Mohd Lair et al. (2009 [triangle]); Lin & Sang (2009 [triangle]); Suleiman Gwaram et al. (2010 [triangle]). For hydrazone compounds recently reported by us, see: Han & Zhao (2010a [triangle],b [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For similar compounds, see: Li & Ban (2009 [triangle]); Lo & Ng (2009 [triangle]); Ning & Xu (2009 [triangle]); Zhu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1091-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O4
  • M r = 286.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1091-efi1.jpg
  • a = 13.333 (2) Å
  • b = 7.316 (1) Å
  • c = 13.738 (2) Å
  • β = 94.742 (2)°
  • V = 1335.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.25 × 0.23 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.974, T max = 0.977
  • 7636 measured reflections
  • 3002 independent reflections
  • 1457 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.136
  • S = 0.82
  • 3002 reflections
  • 197 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013395/om2333sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013395/om2333Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C).

supplementary crystallographic information

Comment

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). As a continuation of our work on the structural characterization of such compounds (Han & Zhao, 2010a,b), the title new hydrazone compound is reported.

In the title compound, Fig. 1, the dihedral angle between the two benzene rings is 4.1 (2)°. The molecule adopts an E configuration with respect to the C═N bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Experimental

A mixture of 2,5-dihydroxybenzaldehyde (0.138 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml methanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, single crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement

Amino H atom was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Figures

Fig. 1.
The molecular structure of the title compounds with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The molecular packing of the title compound as viewed down b. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.333 (2) ÅCell parameters from 1316 reflections
b = 7.316 (1) Åθ = 2.7–24.5°
c = 13.738 (2) ŵ = 0.11 mm1
β = 94.742 (2)°T = 298 K
V = 1335.5 (3) Å3Block, colorless
Z = 40.25 × 0.23 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer3002 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
graphiteRint = 0.087
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −17→16
Tmin = 0.974, Tmax = 0.977k = −9→9
7636 measured reflectionsl = −11→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.82w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25674 (12)0.4205 (2)0.31421 (10)0.0660 (5)
H10.20360.37850.28930.099*
O20.12591 (10)0.3298 (2)0.17731 (10)0.0530 (4)
O3−0.10549 (10)0.1488 (2)0.03610 (9)0.0528 (4)
H3−0.04980.19580.04670.079*
O4−0.22237 (11)0.1219 (2)−0.35891 (9)0.0555 (4)
H4−0.19370.2007−0.38880.083*
N10.15386 (12)0.3685 (2)0.01891 (11)0.0451 (4)
H1A0.1913 (15)0.405 (3)−0.0290 (12)0.080*
N20.06052 (11)0.2950 (2)−0.00814 (11)0.0441 (4)
C10.28436 (13)0.4534 (3)0.14397 (13)0.0401 (5)
C20.31477 (14)0.4737 (3)0.24325 (14)0.0447 (5)
C30.40822 (15)0.5532 (3)0.27436 (15)0.0513 (6)
C40.46896 (16)0.6081 (3)0.20408 (17)0.0573 (6)
H4A0.53100.66060.22350.069*
C50.44147 (15)0.5884 (3)0.10597 (16)0.0570 (6)
H50.48460.62710.06020.068*
C60.34987 (14)0.5113 (3)0.07559 (14)0.0496 (5)
H60.33150.49760.00920.060*
C70.43835 (18)0.5770 (4)0.38160 (16)0.0771 (8)
H7A0.50620.62190.39030.116*
H7B0.43420.46150.41420.116*
H7C0.39390.66280.40880.116*
C80.18276 (14)0.3793 (3)0.11571 (14)0.0412 (5)
C90.03111 (14)0.2882 (3)−0.09837 (14)0.0436 (5)
H90.07200.3335−0.14440.052*
C10−0.06605 (13)0.2097 (3)−0.12963 (13)0.0385 (5)
C11−0.13067 (14)0.1425 (3)−0.06259 (13)0.0404 (5)
C12−0.22281 (14)0.0702 (3)−0.09566 (15)0.0470 (5)
H12−0.26530.0246−0.05110.056*
C13−0.25242 (14)0.0648 (3)−0.19390 (14)0.0462 (5)
H13−0.31500.0168−0.21520.055*
C14−0.18970 (14)0.1304 (3)−0.26101 (13)0.0413 (5)
C15−0.09706 (13)0.2005 (3)−0.22897 (13)0.0418 (5)
H15−0.05440.2425−0.27430.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0648 (10)0.0952 (13)0.0377 (8)−0.0074 (9)0.0018 (7)0.0016 (8)
O20.0484 (8)0.0677 (10)0.0431 (8)−0.0063 (7)0.0044 (7)0.0013 (7)
O30.0568 (9)0.0703 (10)0.0313 (8)−0.0052 (8)0.0034 (6)0.0003 (7)
O40.0528 (9)0.0748 (12)0.0365 (8)−0.0068 (7)−0.0098 (7)−0.0039 (7)
N10.0382 (9)0.0598 (12)0.0362 (10)−0.0042 (8)−0.0040 (7)−0.0021 (8)
N20.0398 (9)0.0505 (11)0.0403 (10)−0.0002 (7)−0.0068 (7)−0.0037 (8)
C10.0392 (10)0.0443 (12)0.0356 (11)0.0047 (9)−0.0037 (9)−0.0008 (9)
C20.0458 (11)0.0502 (13)0.0375 (11)0.0054 (10)−0.0001 (9)0.0005 (9)
C30.0493 (12)0.0555 (14)0.0463 (13)0.0090 (10)−0.0138 (10)−0.0075 (11)
C40.0376 (11)0.0633 (16)0.0685 (16)0.0023 (10)−0.0098 (11)−0.0054 (12)
C50.0404 (12)0.0762 (16)0.0538 (14)−0.0035 (11)0.0004 (10)0.0049 (12)
C60.0447 (11)0.0667 (15)0.0364 (11)0.0021 (11)−0.0031 (9)−0.0001 (10)
C70.0754 (16)0.098 (2)0.0525 (15)0.0085 (14)−0.0247 (13)−0.0169 (14)
C80.0413 (11)0.0435 (12)0.0378 (11)0.0035 (9)−0.0024 (9)−0.0022 (9)
C90.0392 (11)0.0523 (13)0.0389 (12)0.0015 (9)0.0011 (9)−0.0034 (10)
C100.0371 (10)0.0439 (12)0.0342 (11)0.0028 (9)0.0005 (8)−0.0039 (9)
C110.0456 (11)0.0445 (12)0.0305 (11)0.0037 (9)−0.0006 (9)−0.0016 (9)
C120.0446 (11)0.0514 (13)0.0456 (12)−0.0002 (9)0.0082 (10)0.0012 (10)
C130.0354 (10)0.0516 (13)0.0505 (13)−0.0042 (9)−0.0023 (9)−0.0051 (10)
C140.0399 (11)0.0492 (12)0.0337 (11)0.0042 (9)−0.0039 (9)−0.0035 (9)
C150.0381 (11)0.0549 (13)0.0323 (11)0.0000 (9)0.0024 (8)−0.0023 (9)

Geometric parameters (Å, °)

O1—C21.351 (2)C4—H4A0.9300
O1—H10.8200C5—C61.378 (3)
O2—C81.236 (2)C5—H50.9300
O3—C111.370 (2)C6—H60.9300
O3—H30.8200C7—H7A0.9600
O4—C141.380 (2)C7—H7B0.9600
O4—H40.8200C7—H7C0.9600
N1—C81.356 (2)C9—C101.449 (3)
N1—N21.378 (2)C9—H90.9300
N1—H1A0.899 (19)C10—C151.395 (2)
N2—C91.270 (2)C10—C111.401 (3)
C1—C21.398 (2)C11—C121.379 (3)
C1—C61.400 (3)C12—C131.375 (3)
C1—C81.481 (3)C12—H120.9300
C2—C31.409 (3)C13—C141.381 (3)
C3—C41.371 (3)C13—H130.9300
C3—C71.505 (3)C14—C151.376 (2)
C4—C51.375 (3)C15—H150.9300
C2—O1—H1109.5C3—C7—H7C109.5
C11—O3—H3109.5H7A—C7—H7C109.5
C14—O4—H4109.5H7B—C7—H7C109.5
C8—N1—N2117.67 (16)O2—C8—N1120.92 (18)
C8—N1—H1A124.8 (15)O2—C8—C1121.82 (17)
N2—N1—H1A117.5 (15)N1—C8—C1117.26 (18)
C9—N2—N1118.55 (16)N2—C9—C10120.09 (18)
C2—C1—C6118.40 (17)N2—C9—H9120.0
C2—C1—C8118.67 (18)C10—C9—H9120.0
C6—C1—C8122.87 (17)C15—C10—C11118.53 (17)
O1—C2—C1122.42 (18)C15—C10—C9119.64 (18)
O1—C2—C3116.41 (18)C11—C10—C9121.83 (17)
C1—C2—C3121.17 (19)O3—C11—C12118.53 (18)
C4—C3—C2117.80 (18)O3—C11—C10121.64 (17)
C4—C3—C7122.02 (19)C12—C11—C10119.82 (17)
C2—C3—C7120.2 (2)C13—C12—C11120.65 (19)
C3—C4—C5122.33 (19)C13—C12—H12119.7
C3—C4—H4A118.8C11—C12—H12119.7
C5—C4—H4A118.8C12—C13—C14120.31 (17)
C4—C5—C6119.8 (2)C12—C13—H13119.8
C4—C5—H5120.1C14—C13—H13119.8
C6—C5—H5120.1C15—C14—O4122.08 (18)
C5—C6—C1120.46 (19)C15—C14—C13119.55 (17)
C5—C6—H6119.8O4—C14—C13118.36 (16)
C1—C6—H6119.8C14—C15—C10121.11 (18)
C3—C7—H7A109.5C14—C15—H15119.4
C3—C7—H7B109.5C10—C15—H15119.4
H7A—C7—H7B109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.822.5452 (19)147
O3—H3···N20.821.852.576 (2)146
O4—H4···O3i0.821.972.774 (2)169
N1—H1A···O4ii0.90 (2)2.27 (2)3.072 (2)148 (2)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2333).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [PubMed]
  • Han, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025. [PMC free article] [PubMed]
  • Han, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026. [PMC free article] [PubMed]
  • Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. [PMC free article] [PubMed]
  • Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650. [PMC free article] [PubMed]
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [PMC free article] [PubMed]
  • Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906. [PMC free article] [PubMed]
  • Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem.63, 688–699.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721. [PMC free article] [PubMed]
  • Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography