PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1063–o1064.
Published online 2010 April 14. doi:  10.1107/S1600536810011931
PMCID: PMC2979246

(4-Chloro­phen­yl)[1-(4-methoxy­phen­yl)-3-(5-nitro-2-fur­yl)-1H-pyrazol-4-yl]methanone

Abstract

In the title compound, C21H14ClN3O5, an intra­molecular C—H(...)O hydrogen bond generates an S(7) ring motif and the furan and pyrazole rings are almost coplanar, making a dihedral angle of 1.98 (5)°. The pyrazole ring is inclined at dihedral angles of 47.59 (4) and 7.27 (4)° to the chloro­phenyl and methoxy­phenyl groups, respectively. The nitro group is almost coplanar to its attached furan ring [dihedral angle = 2.03 (12)°]. In the crystal, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal structure also features short inter­molecular O(...)N [2.8546 (12) Å] and Cl(...)O [3.0844 (9) Å] contacts as well as aromatic π–π stacking inter­actions [centroid–centroid distance = 3.4367 (6) Å].

Related literature

For general background to and applications of the title compound, see: Hedge et al. (2006 [triangle]); Kalluraya et al. (1994 [triangle]); Rai & Kalluraya (2006 [triangle]); Rai et al. (2008 [triangle]). For graph-set theory, see: Bernstein et al. (1995 [triangle]). For closely related structures, see: Goh et al. (2009a [triangle],b [triangle], 2010 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1063-scheme1.jpg

Experimental

Crystal data

  • C21H14ClN3O5
  • M r = 423.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1063-efi1.jpg
  • a = 9.5589 (8) Å
  • b = 9.6603 (8) Å
  • c = 10.6401 (9) Å
  • α = 95.523 (2)°
  • β = 91.074 (2)°
  • γ = 107.706 (2)°
  • V = 930.44 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 100 K
  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART APEX DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.919, T max = 0.963
  • 31674 measured reflections
  • 8076 independent reflections
  • 7107 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.146
  • S = 1.13
  • 8076 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011931/hb5382sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011931/hb5382Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The pyrazole nucleus constitutes an interesting class of organic compound with diverse chemical applications. They possess anti-pyretic, anti-tumor, tranquilizing and herbicidal activities. Sydnones are easily accessible aromatic compounds and versatile synthetic intermediates with a masked azomethine imine unit. The 1,3-dipolar cycloaddition reaction with various dipolarophiles offers a convenient synthetic route for the preparation of pyrazole derivatives and has been studied extensively (Rai & Kalluraya, 2006; Rai et al., 2008). The incorporation of 5-nitrofuran moiety into various heterocyclic systems has found to increase their biological activities. We have reported a few heterocyclic systems carrying 5-nitrofuran moiety as potent anti-microbial agents (Hedge et al., 2006). In continuation of our studies on 1,3-dipolar cycloaddition reactions of sydnones with dipolarphiles carrying nitrofuran moiety (Kalluraya et al., 1994), we herein report the crystal structure of the above pyrazole compound.

In the title pyrazole compound, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.003 (1) and 0.004 (1) Å, respectively, at atoms O1 and N2. These two rings are coplanar to one another, making a dihedral angle of 3.06 (10)° between them. The pyrazole ring is inclined at dihedral angles of 47.59 (4) and 7.27 (4)°, respectively, with the mean planes through 4-chlorophenyl (C1-C6/Cl1) and 4-methoxyphenyl (C15-C20/O3/C21) groups. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle formed of 2.03 (12)°. The bond lengths and angles are comparable to those observed in closely related pyrazole structures (Goh et al., 2009a,b, 2010).

In the crystal structure, intermolecular C2—H2A···O5, C14—H14A···O4 and C21—H21A···O2 hydrogen bonds (Table 1) link neighbouring molecules into a three-dimensional extended network. The interesting feature of the crystal structure is the short intermolecular Cl1···O3 [3.0844 (9) Å, symmetry code: -x+3, -y+2, -z+1] and O2···N3 [2.8546 (12) Å, symmetry code: -x+1, -y+1, -z+1] interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by the weak intermolecular π–π interactions involving the pyrazole ring [Cg1···Cg1 = 3.4367 (6) Å; symmetry code: -x+2, -y+1, -z+1].

Experimental

3-(p-Anisyl)sydnone (0.01 mol) and 1-(p-chlorophenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from a mixture of ethanol and DMF. The solid obtained was collected by filtration, washed with ethanol and dried. Orange blocks of (I) were obtained from a 1:2 mixture of ethanol and DMF by slow evaporation.

Refinement

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
The crystal structure of (I), viewed along the c axis, showing the three-dimensional extended network. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C21H14ClN3O5Z = 2
Mr = 423.80F(000) = 436
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5589 (8) ÅCell parameters from 9944 reflections
b = 9.6603 (8) Åθ = 2.6–37.6°
c = 10.6401 (9) ŵ = 0.25 mm1
α = 95.523 (2)°T = 100 K
β = 91.074 (2)°Block, orange
γ = 107.706 (2)°0.35 × 0.30 × 0.15 mm
V = 930.44 (13) Å3

Data collection

Bruker SMART APEX DUO CCD diffractometer8076 independent reflections
Radiation source: fine-focus sealed tube7107 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −15→15
Tmin = 0.919, Tmax = 0.963k = −13→15
31674 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.095P)2 + 0.1254P] where P = (Fo2 + 2Fc2)/3
8076 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = −0.70 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.29464 (2)1.14454 (3)0.06814 (2)0.02139 (7)
O10.61940 (7)0.32154 (7)0.56102 (7)0.01521 (12)
O20.71984 (7)0.69219 (8)0.30892 (7)0.01788 (13)
O31.40488 (8)0.71448 (9)1.04135 (7)0.02060 (14)
O40.30019 (9)0.02849 (9)0.52238 (8)0.02777 (17)
O50.47299 (9)0.09317 (9)0.67232 (9)0.02794 (18)
N10.99713 (8)0.64428 (8)0.64105 (7)0.01227 (12)
N20.87287 (8)0.52812 (8)0.62820 (7)0.01314 (12)
N30.41817 (9)0.10960 (9)0.57182 (8)0.01796 (14)
C11.11008 (9)0.82550 (10)0.28130 (8)0.01484 (14)
H1A1.13860.75820.32410.018*
C21.21148 (9)0.92103 (10)0.21216 (9)0.01643 (15)
H2A1.30690.91610.20640.020*
C31.16768 (9)1.02368 (10)0.15196 (8)0.01521 (14)
C41.02482 (10)1.03149 (10)0.15658 (9)0.01617 (15)
H4A0.99771.10170.11670.019*
C50.92349 (9)0.93211 (10)0.22196 (8)0.01508 (14)
H5A0.82660.93320.22280.018*
C60.96547 (9)0.83057 (9)0.28646 (8)0.01292 (13)
C70.84764 (9)0.72576 (9)0.35099 (8)0.01295 (13)
C80.88513 (9)0.66693 (9)0.46450 (8)0.01251 (13)
C90.80310 (8)0.54115 (9)0.52175 (8)0.01230 (13)
C100.66580 (9)0.42891 (9)0.48123 (8)0.01289 (13)
C110.56829 (10)0.40179 (10)0.37915 (8)0.01690 (15)
H11A0.57530.45800.31190.020*
C120.45459 (10)0.27164 (11)0.39557 (9)0.01852 (16)
H12A0.37220.22500.34210.022*
C130.49222 (9)0.23009 (9)0.50622 (9)0.01568 (15)
C141.00849 (9)0.72922 (9)0.54574 (8)0.01321 (14)
H14A1.08480.81370.53630.016*
C151.09929 (9)0.66115 (9)0.74528 (8)0.01229 (13)
C161.07607 (9)0.55323 (10)0.82671 (8)0.01586 (15)
H16A0.99300.47160.81430.019*
C171.17703 (10)0.56696 (11)0.92700 (9)0.01755 (15)
H17A1.16240.49360.98050.021*
C181.29982 (9)0.69077 (10)0.94696 (8)0.01540 (14)
C191.32113 (9)0.80016 (10)0.86573 (9)0.01607 (15)
H19A1.40190.88390.88000.019*
C201.22302 (9)0.78476 (9)0.76433 (8)0.01446 (14)
H20A1.23930.85640.70910.017*
C211.39244 (12)0.60104 (13)1.12158 (10)0.0247 (2)
H21A1.47700.62761.17930.037*
H21B1.38670.51151.07090.037*
H21C1.30530.58791.16840.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01544 (10)0.02511 (12)0.01991 (12)−0.00141 (8)0.00097 (7)0.00950 (8)
O10.0108 (2)0.0127 (3)0.0197 (3)−0.0006 (2)0.0000 (2)0.0044 (2)
O20.0113 (2)0.0195 (3)0.0219 (3)0.0026 (2)−0.0025 (2)0.0051 (2)
O30.0142 (3)0.0274 (4)0.0167 (3)0.0004 (3)−0.0036 (2)0.0065 (3)
O40.0233 (3)0.0221 (3)0.0248 (4)−0.0114 (3)0.0003 (3)−0.0004 (3)
O50.0186 (3)0.0246 (4)0.0393 (5)0.0009 (3)−0.0044 (3)0.0172 (3)
N10.0098 (3)0.0114 (3)0.0141 (3)0.0005 (2)−0.0005 (2)0.0027 (2)
N20.0099 (3)0.0119 (3)0.0157 (3)0.0003 (2)−0.0003 (2)0.0025 (2)
N30.0147 (3)0.0128 (3)0.0234 (4)−0.0004 (2)0.0030 (3)0.0023 (3)
C10.0117 (3)0.0165 (3)0.0162 (3)0.0037 (3)−0.0007 (2)0.0037 (3)
C20.0111 (3)0.0196 (4)0.0177 (4)0.0027 (3)−0.0002 (3)0.0045 (3)
C30.0131 (3)0.0165 (3)0.0140 (3)0.0010 (3)0.0003 (2)0.0034 (3)
C40.0156 (3)0.0177 (4)0.0161 (3)0.0053 (3)0.0015 (3)0.0055 (3)
C50.0134 (3)0.0173 (3)0.0159 (3)0.0057 (3)0.0018 (2)0.0049 (3)
C60.0114 (3)0.0133 (3)0.0137 (3)0.0027 (2)0.0002 (2)0.0028 (2)
C70.0109 (3)0.0130 (3)0.0146 (3)0.0028 (2)−0.0001 (2)0.0026 (2)
C80.0102 (3)0.0123 (3)0.0140 (3)0.0017 (2)−0.0001 (2)0.0025 (2)
C90.0098 (3)0.0115 (3)0.0150 (3)0.0021 (2)0.0008 (2)0.0020 (2)
C100.0100 (3)0.0121 (3)0.0150 (3)0.0010 (2)0.0014 (2)0.0016 (2)
C110.0153 (3)0.0168 (4)0.0143 (3)−0.0012 (3)−0.0006 (3)0.0011 (3)
C120.0159 (3)0.0183 (4)0.0154 (4)−0.0027 (3)−0.0003 (3)−0.0009 (3)
C130.0123 (3)0.0127 (3)0.0185 (4)−0.0012 (3)0.0018 (3)0.0008 (3)
C140.0112 (3)0.0125 (3)0.0146 (3)0.0011 (2)−0.0002 (2)0.0030 (2)
C150.0101 (3)0.0124 (3)0.0134 (3)0.0019 (2)0.0001 (2)0.0017 (2)
C160.0140 (3)0.0154 (3)0.0151 (3)−0.0008 (3)−0.0009 (3)0.0042 (3)
C170.0152 (3)0.0198 (4)0.0153 (4)0.0008 (3)−0.0007 (3)0.0061 (3)
C180.0117 (3)0.0197 (4)0.0133 (3)0.0027 (3)−0.0002 (2)0.0021 (3)
C190.0116 (3)0.0159 (3)0.0186 (4)0.0011 (3)−0.0013 (3)0.0021 (3)
C200.0112 (3)0.0130 (3)0.0180 (4)0.0016 (2)−0.0011 (2)0.0031 (3)
C210.0208 (4)0.0327 (5)0.0192 (4)0.0042 (4)−0.0033 (3)0.0096 (4)

Geometric parameters (Å, °)

Cl1—C31.7351 (9)C7—C81.4662 (12)
O1—C131.3488 (11)C8—C141.3892 (11)
O1—C101.3774 (10)C8—C91.4294 (11)
O2—C71.2282 (10)C9—C101.4516 (11)
O3—C181.3593 (11)C10—C111.3696 (12)
O3—C211.4313 (13)C11—C121.4180 (13)
O4—N31.2343 (11)C11—H11A0.9300
O5—N31.2270 (12)C12—C131.3563 (13)
N1—C141.3503 (11)C12—H12A0.9300
N1—N21.3574 (10)C14—H14A0.9300
N1—C151.4275 (11)C15—C161.3883 (12)
N2—C91.3393 (11)C15—C201.3969 (12)
N3—C131.4200 (12)C16—C171.3942 (12)
C1—C21.3949 (12)C16—H16A0.9300
C1—C61.3998 (12)C17—C181.3933 (13)
C1—H1A0.9300C17—H17A0.9300
C2—C31.3906 (12)C18—C191.3987 (13)
C2—H2A0.9300C19—C201.3828 (12)
C3—C41.3919 (12)C19—H19A0.9300
C4—C51.3899 (13)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.3975 (12)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C71.4948 (12)
C13—O1—C10105.18 (7)O1—C10—C9114.95 (7)
C18—O3—C21117.66 (8)C10—C11—C12106.87 (8)
C14—N1—N2112.41 (7)C10—C11—H11A126.6
C14—N1—C15128.09 (7)C12—C11—H11A126.6
N2—N1—C15119.46 (7)C13—C12—C11104.95 (8)
C9—N2—N1105.18 (7)C13—C12—H12A127.5
O5—N3—O4124.52 (9)C11—C12—H12A127.5
O5—N3—C13119.17 (8)O1—C13—C12112.92 (8)
O4—N3—C13116.31 (9)O1—C13—N3116.80 (8)
C2—C1—C6120.23 (8)C12—C13—N3130.27 (8)
C2—C1—H1A119.9N1—C14—C8107.30 (7)
C6—C1—H1A119.9N1—C14—H14A126.3
C3—C2—C1118.94 (8)C8—C14—H14A126.3
C3—C2—H2A120.5C16—C15—C20120.14 (8)
C1—C2—H2A120.5C16—C15—N1119.68 (7)
C2—C3—C4121.82 (8)C20—C15—N1120.17 (7)
C2—C3—Cl1118.96 (7)C15—C16—C17120.14 (8)
C4—C3—Cl1119.22 (7)C15—C16—H16A119.9
C5—C4—C3118.60 (8)C17—C16—H16A119.9
C5—C4—H4A120.7C18—C17—C16119.84 (8)
C3—C4—H4A120.7C18—C17—H17A120.1
C4—C5—C6120.81 (8)C16—C17—H17A120.1
C4—C5—H5A119.6O3—C18—C17124.49 (8)
C6—C5—H5A119.6O3—C18—C19115.85 (8)
C5—C6—C1119.53 (8)C17—C18—C19119.66 (8)
C5—C6—C7116.77 (7)C20—C19—C18120.48 (8)
C1—C6—C7123.58 (7)C20—C19—H19A119.8
O2—C7—C8120.95 (8)C18—C19—H19A119.8
O2—C7—C6119.13 (8)C19—C20—C15119.70 (8)
C8—C7—C6119.91 (7)C19—C20—H20A120.1
C14—C8—C9104.13 (7)C15—C20—H20A120.1
C14—C8—C7126.36 (8)O3—C21—H21A109.5
C9—C8—C7129.40 (7)O3—C21—H21B109.5
N2—C9—C8110.98 (7)H21A—C21—H21B109.5
N2—C9—C10117.95 (7)O3—C21—H21C109.5
C8—C9—C10131.03 (8)H21A—C21—H21C109.5
C11—C10—O1110.07 (7)H21B—C21—H21C109.5
C11—C10—C9134.98 (8)
C14—N1—N2—C9−0.53 (9)O1—C10—C11—C120.31 (10)
C15—N1—N2—C9−178.56 (7)C9—C10—C11—C12179.62 (9)
C6—C1—C2—C31.91 (13)C10—C11—C12—C13−0.05 (10)
C1—C2—C3—C4−1.44 (14)C10—O1—C13—C120.43 (10)
C1—C2—C3—Cl1178.93 (7)C10—O1—C13—N3−178.49 (7)
C2—C3—C4—C5−0.89 (14)C11—C12—C13—O1−0.24 (11)
Cl1—C3—C4—C5178.74 (7)C11—C12—C13—N3178.50 (9)
C3—C4—C5—C62.78 (14)O5—N3—C13—O1−1.02 (13)
C4—C5—C6—C1−2.31 (13)O4—N3—C13—O1178.36 (8)
C4—C5—C6—C7−178.41 (8)O5—N3—C13—C12−179.72 (10)
C2—C1—C6—C5−0.08 (13)O4—N3—C13—C12−0.34 (15)
C2—C1—C6—C7175.74 (8)N2—N1—C14—C80.08 (9)
C5—C6—C7—O227.96 (12)C15—N1—C14—C8177.90 (7)
C1—C6—C7—O2−147.96 (9)C9—C8—C14—N10.37 (9)
C5—C6—C7—C8−150.78 (8)C7—C8—C14—N1177.02 (8)
C1—C6—C7—C833.30 (12)C14—N1—C15—C16−172.85 (8)
O2—C7—C8—C14−156.41 (9)N2—N1—C15—C164.84 (12)
C6—C7—C8—C1422.30 (12)C14—N1—C15—C206.33 (13)
O2—C7—C8—C919.38 (14)N2—N1—C15—C20−175.98 (7)
C6—C7—C8—C9−161.90 (8)C20—C15—C16—C17−0.74 (13)
N1—N2—C9—C80.76 (9)N1—C15—C16—C17178.45 (8)
N1—N2—C9—C10178.64 (7)C15—C16—C17—C181.34 (14)
C14—C8—C9—N2−0.72 (9)C21—O3—C18—C173.45 (14)
C7—C8—C9—N2−177.23 (8)C21—O3—C18—C19−176.00 (9)
C14—C8—C9—C10−178.24 (8)C16—C17—C18—O3−179.70 (8)
C7—C8—C9—C105.26 (15)C16—C17—C18—C19−0.27 (14)
C13—O1—C10—C11−0.45 (9)O3—C18—C19—C20178.05 (8)
C13—O1—C10—C9−179.91 (7)C17—C18—C19—C20−1.43 (13)
N2—C9—C10—C11−177.28 (9)C18—C19—C20—C152.03 (13)
C8—C9—C10—C110.10 (16)C16—C15—C20—C19−0.95 (13)
N2—C9—C10—O12.01 (11)N1—C15—C20—C19179.87 (8)
C8—C9—C10—O1179.38 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.272.9153 (12)126
C2—H2A···O5i0.932.483.2820 (13)145
C14—H14A···O4ii0.932.463.3846 (12)175
C21—H21A···O2iii0.962.553.5064 (14)173

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5382).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B & Rai, N. S. (2010). Acta Cryst. E66, o1229–o1230. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100. [PMC free article] [PubMed]
  • Hedge, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun.36, 1285–1290.
  • Kalluraya, B., D’Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.
  • Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography