PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1011.
Published online 2010 April 2. doi:  10.1107/S1600536810011578
PMCID: PMC2979240

3,3′-(m-Phenyl­enedi­oxy)diphthalonitrile

Abstract

In the title compound, C22H10N4O2, the dihedral angles between the mean planes of the central benzene ring and the pendant rings are 79.20 (6) and 80.29 (6)°. The dihedral angle between the pendant rings is 10.27 (7)°.

Related literature

For background to ‘semi-rigid’ mol­ecules as ligands, see: Wang et al. (2005 [triangle], 2009 [triangle]). For related structures, see: Huang et al. (2005 [triangle]); Zhang & Lu (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1011-scheme1.jpg

Experimental

Crystal data

  • C22H10N4O2
  • M r = 362.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1011-efi1.jpg
  • a = 15.668 (3) Å
  • b = 12.722 (3) Å
  • c = 19.004 (5) Å
  • β = 109.911 (6)°
  • V = 3561.7 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.982, T max = 0.991
  • 10307 measured reflections
  • 3992 independent reflections
  • 3145 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.111
  • S = 1.03
  • 3992 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011578/hb5363sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011578/hb5363Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Professor Yongzhong Bian, the Doctoral Foundation of Shandong (grant No. 2007BS04027) and Postdoctoral Scientific Foundation of China and Shandong (grant Nos. 200603070 and 20070411093).

supplementary crystallographic information

Comment

In the past few years, the semirigidity of molecules have been extensively employed for search of novel functional compounds. For example,a new family of multidentate O-donor ligands with a semirigid V-shaped molecular framework have been used to construct metal-organic coordination frameworks (Wang et al., 2009; Wang et al., 2005), in which some showed interesting properties. Here, we present the structure of a new semirigid organic ligand.

The crystal structure of the title compound is given in Fig. 1. As can be found, all the bond lengths and angles are normal and correspond to those observed in related compound (Huang et al., 2005; Zhang et al., 2007). The aromatic rings (C3—C8 and C15—C20) in sides of the molecule are in the same direction of the aromatic rings(C9—C14) with a cis configuration. The three dihedral angles in the title compound are 79.81Å for C3—C8 and C9—C14, 80.83Å for C15—C20 and C9—C14,and 10.54 Å for C3—C8 and C15—C20, respectively.

Experimental

Resorcinol (0.53 g, 5 mmol) and anhydrous K2CO3 was added to the solution of 2,3-dicyanophenyl nitrate (1.73 g, 10 mmol) in DMSO (25 ml). A kind of brown solution was generated after the solution was stirred for 48 hours at room temperature. The brown solution was added to 200 ml water, and was stirred for 30 min at room temperature. The precipitate formed was filtered, and washed by water. Yellow rods of (I) were obtained by solvent evaporation of the solution of the title compound in acetonitrile. Yield: 1.65 g, 91.2% Anal. for: C22H10N4O2 Calc. C, 72.92; H, 2.76; N, 15.47; Found: C, 72.85; H, 2.88; N, 15.44.

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C(sp2 hybrid)-H distances of 0.93Å (Uiso(H)=1.2Ueq(C)).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at 30% probability level.

Crystal data

C22H10N4O2F(000) = 1488
Mr = 362.34Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4716 reflections
a = 15.668 (3) Åθ = 2.6–27.4°
b = 12.722 (3) ŵ = 0.09 mm1
c = 19.004 (5) ÅT = 298 K
β = 109.911 (6)°Rod, yellow
V = 3561.7 (14) Å30.20 × 0.15 × 0.10 mm
Z = 8

Data collection

Bruker SMART 1000 CCD diffractometer3992 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −14→20
Tmin = 0.982, Tmax = 0.991k = −15→15
10307 measured reflectionsl = −24→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0506P)2 + 1.0114P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3992 reflectionsΔρmax = 0.20 e Å3
254 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.24878 (8)0.23670 (11)0.58469 (7)0.0496 (3)
O10.41988 (6)0.16069 (8)0.64684 (5)0.0597 (3)
O20.73624 (5)0.20407 (7)0.70914 (6)0.0582 (3)
C90.49526 (7)0.15184 (9)0.62398 (7)0.0425 (3)
C100.57791 (7)0.17608 (9)0.67719 (7)0.0437 (3)
H100.58260.19260.72600.052*
C200.88271 (8)0.16165 (10)0.78616 (7)0.0438 (3)
C110.65301 (7)0.17492 (9)0.65542 (7)0.0459 (3)
C140.48704 (8)0.12738 (10)0.55183 (7)0.0474 (3)
H140.43080.11100.51680.057*
C30.26451 (7)0.12567 (10)0.58820 (6)0.0420 (3)
C40.19286 (7)0.05388 (10)0.56020 (6)0.0443 (3)
C150.79734 (7)0.12689 (9)0.74065 (7)0.0448 (3)
C120.64815 (9)0.15132 (11)0.58405 (8)0.0554 (3)
H120.70000.15120.57070.067*
N30.23572 (10)0.32515 (11)0.58276 (8)0.0727 (4)
C210.90124 (8)0.27171 (11)0.79679 (8)0.0535 (3)
C80.35196 (8)0.08751 (11)0.61986 (7)0.0466 (3)
C160.77924 (9)0.02090 (10)0.73059 (8)0.0558 (3)
H160.7222−0.00220.70050.067*
C50.20892 (9)−0.05263 (11)0.56674 (8)0.0528 (3)
H50.1612−0.10000.54850.063*
C190.95031 (8)0.08725 (11)0.82021 (7)0.0499 (3)
C130.56427 (9)0.12762 (11)0.53235 (8)0.0543 (3)
H130.55970.11150.48350.065*
N21.11044 (8)0.15377 (13)0.89675 (8)0.0774 (4)
C10.10262 (8)0.09249 (11)0.52163 (8)0.0524 (3)
C60.29672 (9)−0.08846 (11)0.60074 (8)0.0585 (3)
H60.3077−0.16040.60610.070*
C180.93170 (10)−0.01859 (12)0.80996 (8)0.0630 (4)
H180.9762−0.06810.83280.076*
C170.84594 (11)−0.05017 (12)0.76525 (9)0.0661 (4)
H170.8332−0.12160.75850.079*
C221.03960 (9)0.12385 (12)0.86413 (8)0.0577 (4)
N40.03136 (8)0.12171 (11)0.48961 (8)0.0725 (4)
C70.36803 (9)−0.01905 (12)0.62679 (8)0.0564 (3)
H70.4269−0.04410.64900.068*
N10.91780 (9)0.35902 (11)0.80612 (9)0.0809 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0399 (6)0.0575 (8)0.0501 (7)−0.0042 (6)0.0137 (5)−0.0057 (6)
O10.0322 (4)0.0797 (7)0.0681 (6)−0.0119 (4)0.0181 (4)−0.0269 (5)
O20.0293 (4)0.0448 (5)0.0869 (7)−0.0052 (3)0.0020 (4)−0.0088 (4)
C90.0287 (5)0.0456 (6)0.0512 (7)−0.0002 (4)0.0111 (5)−0.0022 (5)
C100.0347 (6)0.0455 (6)0.0463 (6)−0.0043 (5)0.0080 (5)−0.0018 (5)
C200.0333 (6)0.0515 (7)0.0468 (6)−0.0069 (5)0.0137 (5)−0.0004 (5)
C110.0286 (5)0.0389 (6)0.0635 (8)−0.0048 (4)0.0071 (5)−0.0023 (5)
C140.0357 (6)0.0514 (7)0.0482 (7)−0.0012 (5)0.0056 (5)−0.0031 (5)
C30.0334 (5)0.0526 (7)0.0406 (6)−0.0027 (5)0.0134 (5)−0.0007 (5)
C40.0323 (6)0.0554 (7)0.0442 (6)−0.0035 (5)0.0117 (5)0.0026 (5)
C150.0326 (5)0.0463 (7)0.0540 (7)−0.0043 (5)0.0129 (5)−0.0004 (5)
C120.0422 (7)0.0545 (7)0.0764 (9)−0.0084 (6)0.0290 (6)−0.0085 (7)
N30.0745 (9)0.0599 (8)0.0802 (9)0.0003 (7)0.0219 (7)−0.0093 (6)
C210.0306 (6)0.0589 (8)0.0642 (8)−0.0086 (5)0.0076 (5)−0.0030 (6)
C80.0313 (5)0.0621 (8)0.0462 (6)−0.0049 (5)0.0128 (5)−0.0072 (5)
C160.0443 (7)0.0484 (7)0.0661 (8)−0.0098 (6)0.0077 (6)0.0010 (6)
C50.0432 (7)0.0544 (8)0.0602 (8)−0.0089 (6)0.0168 (6)0.0020 (6)
C190.0383 (6)0.0640 (8)0.0453 (6)−0.0011 (6)0.0116 (5)0.0054 (6)
C130.0537 (7)0.0589 (8)0.0534 (7)−0.0065 (6)0.0223 (6)−0.0070 (6)
N20.0416 (7)0.1071 (11)0.0731 (8)−0.0068 (7)0.0059 (6)0.0123 (8)
C10.0369 (6)0.0569 (8)0.0581 (7)−0.0078 (6)0.0094 (6)0.0031 (6)
C60.0523 (8)0.0527 (8)0.0718 (9)0.0046 (6)0.0229 (7)0.0087 (7)
C180.0578 (8)0.0600 (9)0.0630 (8)0.0099 (7)0.0098 (7)0.0136 (7)
C170.0674 (9)0.0459 (7)0.0737 (9)−0.0043 (6)0.0093 (8)0.0075 (7)
C220.0395 (7)0.0768 (10)0.0532 (7)0.0029 (6)0.0111 (6)0.0111 (7)
N40.0399 (6)0.0705 (8)0.0914 (10)−0.0021 (6)0.0018 (6)0.0083 (7)
C70.0360 (6)0.0694 (9)0.0617 (8)0.0092 (6)0.0140 (6)0.0056 (7)
N10.0538 (7)0.0594 (8)0.1145 (12)−0.0151 (6)0.0094 (8)−0.0088 (8)

Geometric parameters (Å, °)

C2—N31.1421 (19)C15—C161.3777 (18)
C2—C31.4315 (19)C12—C131.3798 (19)
O1—C81.3750 (15)C12—H120.9300
O1—C91.3949 (14)C21—N11.1406 (19)
O2—C151.3596 (15)C8—C71.377 (2)
O2—C111.4048 (14)C16—C171.369 (2)
C9—C141.3686 (17)C16—H160.9300
C9—C101.3795 (16)C5—C61.3828 (19)
C10—C111.3740 (16)C5—H50.9300
C10—H100.9300C19—C181.377 (2)
C20—C151.3946 (16)C19—C221.4406 (18)
C20—C191.4035 (18)C13—H130.9300
C20—C211.4303 (19)N2—C221.1369 (18)
C11—C121.3657 (19)C1—N41.1368 (16)
C14—C131.3808 (18)C6—C71.377 (2)
C14—H140.9300C6—H60.9300
C3—C81.3834 (16)C18—C171.382 (2)
C3—C41.4038 (16)C18—H180.9300
C4—C51.3761 (19)C17—H170.9300
C4—C11.4393 (17)C7—H70.9300
N3—C2—C3178.96 (15)N1—C21—C20178.61 (16)
C8—O1—C9117.33 (9)O1—C8—C7122.54 (11)
C15—O2—C11118.00 (9)O1—C8—C3116.79 (12)
C14—C9—C10121.99 (11)C7—C8—C3120.59 (11)
C14—C9—O1121.98 (10)C17—C16—C15119.49 (12)
C10—C9—O1115.89 (11)C17—C16—H16120.3
C11—C10—C9117.60 (11)C15—C16—H16120.3
C11—C10—H10121.2C4—C5—C6119.28 (12)
C9—C10—H10121.2C4—C5—H5120.4
C15—C20—C19119.07 (12)C6—C5—H5120.4
C15—C20—C21120.25 (11)C18—C19—C20120.26 (12)
C19—C20—C21120.67 (11)C18—C19—C22121.00 (13)
C12—C11—C10122.52 (11)C20—C19—C22118.73 (13)
C12—C11—O2120.25 (11)C12—C13—C14121.25 (12)
C10—C11—O2117.16 (11)C12—C13—H13119.4
C9—C14—C13118.43 (11)C14—C13—H13119.4
C9—C14—H14120.8N4—C1—C4178.29 (16)
C13—C14—H14120.8C7—C6—C5120.85 (13)
C8—C3—C4118.83 (12)C7—C6—H6119.6
C8—C3—C2119.73 (11)C5—C6—H6119.6
C4—C3—C2121.43 (10)C19—C18—C17119.06 (13)
C5—C4—C3120.56 (11)C19—C18—H18120.5
C5—C4—C1119.98 (11)C17—C18—H18120.5
C3—C4—C1119.41 (12)C16—C17—C18121.77 (14)
O2—C15—C16124.39 (11)C16—C17—H17119.1
O2—C15—C20115.27 (10)C18—C17—H17119.1
C16—C15—C20120.34 (11)N2—C22—C19177.82 (15)
C11—C12—C13118.21 (12)C8—C7—C6119.83 (12)
C11—C12—H12120.9C8—C7—H7120.1
C13—C12—H12120.9C6—C7—H7120.1
C8—O1—C9—C1441.14 (17)C9—O1—C8—C3−129.48 (12)
C8—O1—C9—C10−143.02 (12)C4—C3—C8—O1−179.70 (10)
C14—C9—C10—C11−0.04 (18)C2—C3—C8—O10.21 (16)
O1—C9—C10—C11−175.87 (11)C4—C3—C8—C7−2.83 (18)
C9—C10—C11—C120.24 (18)C2—C3—C8—C7177.08 (12)
C9—C10—C11—O2177.36 (10)O2—C15—C16—C17−179.83 (13)
C15—O2—C11—C12−77.49 (16)C20—C15—C16—C17−0.4 (2)
C15—O2—C11—C10105.33 (13)C3—C4—C5—C6−0.51 (19)
C10—C9—C14—C13−0.24 (19)C1—C4—C5—C6176.87 (12)
O1—C9—C14—C13175.35 (12)C15—C20—C19—C18−1.39 (19)
C8—C3—C4—C52.48 (17)C21—C20—C19—C18179.66 (13)
C2—C3—C4—C5−177.43 (11)C15—C20—C19—C22176.97 (12)
C8—C3—C4—C1−174.92 (11)C21—C20—C19—C22−1.98 (18)
C2—C3—C4—C15.17 (17)C11—C12—C13—C14−0.1 (2)
C11—O2—C15—C16−8.46 (19)C9—C14—C13—C120.3 (2)
C11—O2—C15—C20172.12 (11)C4—C5—C6—C7−1.1 (2)
C19—C20—C15—O2−179.22 (11)C20—C19—C18—C170.6 (2)
C21—C20—C15—O2−0.27 (17)C22—C19—C18—C17−177.77 (14)
C19—C20—C15—C161.32 (19)C15—C16—C17—C18−0.4 (2)
C21—C20—C15—C16−179.72 (13)C19—C18—C17—C160.4 (2)
C10—C11—C12—C13−0.2 (2)O1—C8—C7—C6177.91 (12)
O2—C11—C12—C13−177.18 (11)C3—C8—C7—C61.2 (2)
C9—O1—C8—C753.72 (17)C5—C6—C7—C80.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5363).

References

  • Huang, X., Zhao, F., Wang, R.-J., Zhang, F. & Tung, C.-H. (2005). Acta Cryst. E61, o4384–o4386.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, X., Qin, C., Wang, E., Li, Y., Su, Z., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed.44, 5824–5827 [PubMed]
  • Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des pp. 5273–5282
  • Zhang, X.-M. & Lu, J.-T. (2007). Acta Cryst. E63, o3861.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography