PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1116.
Published online 2010 April 21. doi:  10.1107/S1600536810013413
PMCID: PMC2979239

N-(2,4-Dimethyl­phen­yl)-4-methyl­benzamide

Abstract

In the mol­ecule of the title compound, C16H17NO, the N—H and C=O bonds are anti to each other and the two benzene rings form a dihedral angle of 75.8 (1)°. The amide group is twisted by 28.1 (3) and 76.3 (2)° out of the planes of the 4-methyl­phenyl and 2,4-dimethyl­phenyl rings, respectively. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains running along the c axis. The crystal studied was hemihedrally twinned with a twin law resulting from a twofold rotation about the a axis.

Related literature

For the preparation, see: Gowda et al. (2003 [triangle]). For related structures, see: Bowes et al. (2003 [triangle]); Gowda et al. (2003 [triangle], 2009a [triangle],b [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1116-scheme1.jpg

Experimental

Crystal data

  • C16H17NO
  • M r = 239.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1116-efi3.jpg
  • a = 22.4974 (17) Å
  • b = 6.6033 (2) Å
  • c = 9.2474 (6) Å
  • β = 100.209 (6)°
  • V = 1352.02 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.33 × 0.22 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.983, T max = 0.998
  • 12970 measured reflections
  • 3430 independent reflections
  • 2107 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.192
  • S = 1.03
  • 3430 reflections
  • 167 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013413/tk2655sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013413/tk2655Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2003, 2009a,b, 2010), in the present work, the structure of N-(2,4-dimethylphenyl)4-methylbenzamide has been determined. In the structure, the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in 4-methyl-N-(phenyl)benzamide (Gowda et al., 2010), N-(2,6-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009a), N-(3,4-dimethylphenyl)4-methylbenzamide (Gowda et al., 2009b) and the parent benzanilide (Bowes et al., 2003). The benzene rings form a dihedral angle of 75.8 (1) °. The amide group is twisted by 28.1 (3) and 76.3 (2) ° out of the planes of the 4-methylphenyl and 2,4-dimethylphenyl rings, respectively. Intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains running along the c axis of the crystal (Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). Plate-like colourless crystals were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement

Twinning was discovered, with two twin domains in a 1:1 ratio. and taken into account from the early stages of data collection. The twin law was determined as the matrix (-0.9998 0.0015 -0.8619/ -0.0001 -1.0000 -0.0003/ 0.0000 -0.0005 1.0001), which corresponds to a twofold rotation about the a axis. The non-diagonal matrix element of -0.8619 has a near-rational value of -6/7. Inspection of diffraction patterns and HKL files confirmed that reflections are overlapped mainly in the zones with l = 0 and l = 7. The twin scale factor was refined to a final value of 0.484 (2). All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å, and N–H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of crystal structure of (I) with hydrogen bonds shown as dashed lines. Symmetry code (i): x, -y+1/2, z-1/2. H atoms not involved in hydrogen bonding were omitted.

Crystal data

C16H17NOF(000) = 512
Mr = 239.31Dx = 1.176 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3071 reflections
a = 22.4974 (17) Åθ = 1.8–29.6°
b = 6.6033 (2) ŵ = 0.07 mm1
c = 9.2474 (6) ÅT = 295 K
β = 100.209 (6)°Plate, colourless
V = 1352.02 (14) Å30.33 × 0.22 × 0.03 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer3430 independent reflections
graphite2107 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.079
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −26→26
Tmin = 0.983, Tmax = 0.998k = −7→7
12970 measured reflectionsl = −9→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0864P)2] where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.19951 (16)0.4402 (5)−0.0180 (3)0.0468 (9)
C20.14244 (17)0.3963 (5)0.0076 (4)0.0515 (9)
C30.09535 (16)0.5225 (6)−0.0511 (4)0.0567 (10)
H30.05650.4918−0.03680.068*
C40.10472 (18)0.6947 (6)−0.1314 (4)0.0600 (10)
C50.16235 (19)0.7348 (7)−0.1540 (4)0.0645 (11)
H50.16950.8486−0.20770.077*
C60.20935 (17)0.6099 (6)−0.0986 (4)0.0545 (10)
H60.2480.6389−0.11510.065*
C70.27622 (16)0.2919 (5)0.1727 (4)0.0492 (9)
C80.32400 (15)0.1339 (5)0.2078 (4)0.0465 (9)
C90.32238 (18)−0.0436 (6)0.1290 (4)0.0679 (11)
H90.2925−0.06370.04690.081*
C100.3653 (2)−0.1920 (6)0.1721 (5)0.0699 (12)
H100.363−0.31270.11950.084*
C110.41057 (18)−0.1669 (6)0.2888 (5)0.0674 (12)
C120.41121 (17)0.0115 (7)0.3662 (4)0.0702 (11)
H120.44170.03330.44670.084*
C130.36811 (16)0.1577 (6)0.3279 (4)0.0596 (11)
H130.3690.27450.38440.072*
C140.13012 (19)0.2119 (6)0.0952 (5)0.0733 (12)
H14A0.14810.23050.19650.11*
H14B0.14720.09420.05730.11*
H14C0.08730.19420.08720.11*
C150.0514 (2)0.8274 (7)−0.1942 (5)0.0921 (16)
H15A0.06530.9622−0.20820.138*
H15B0.02330.8306−0.12740.138*
H15C0.03190.7733−0.28690.138*
C160.4581 (2)−0.3282 (7)0.3361 (6)0.1064 (17)
H16A0.4485−0.44710.27690.16*
H16B0.459−0.36150.43750.16*
H16C0.497−0.27790.32390.16*
N10.24865 (13)0.3076 (4)0.0336 (3)0.0561 (8)
H1N0.26150.232−0.03010.067*
O10.26376 (11)0.4035 (4)0.2695 (3)0.0578 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.056 (2)0.056 (2)0.0281 (19)0.0081 (18)0.0065 (16)−0.0041 (17)
C20.069 (3)0.055 (2)0.029 (2)0.0028 (19)0.0041 (17)−0.0007 (17)
C30.058 (2)0.066 (3)0.043 (2)−0.005 (2)0.0023 (17)−0.005 (2)
C40.067 (3)0.052 (3)0.056 (3)0.007 (2)−0.0004 (19)0.000 (2)
C50.080 (3)0.056 (2)0.057 (3)−0.003 (2)0.010 (2)0.008 (2)
C60.063 (2)0.056 (2)0.044 (2)−0.013 (2)0.0079 (17)−0.0021 (19)
C70.067 (2)0.056 (2)0.026 (2)−0.0060 (17)0.0125 (17)−0.0031 (18)
C80.056 (2)0.050 (2)0.035 (2)−0.0034 (15)0.0135 (17)0.0004 (17)
C90.087 (3)0.059 (3)0.053 (3)0.005 (2)0.002 (2)−0.003 (2)
C100.090 (3)0.051 (3)0.068 (3)0.008 (2)0.011 (2)−0.009 (2)
C110.068 (3)0.049 (3)0.087 (3)0.006 (2)0.016 (2)0.013 (2)
C120.055 (2)0.083 (3)0.066 (3)0.005 (2)−0.0048 (19)−0.001 (2)
C130.056 (2)0.064 (3)0.054 (2)−0.003 (2)−0.002 (2)−0.012 (2)
C140.094 (3)0.064 (3)0.066 (3)−0.003 (2)0.025 (2)0.014 (2)
C150.089 (3)0.091 (4)0.094 (4)0.021 (3)0.010 (3)0.018 (3)
C160.099 (4)0.093 (4)0.124 (5)0.021 (3)0.011 (3)0.013 (3)
N10.073 (2)0.063 (2)0.0321 (18)0.0104 (17)0.0092 (15)0.0008 (15)
O10.0831 (18)0.0566 (14)0.0335 (13)0.0090 (13)0.0096 (12)−0.0010 (13)

Geometric parameters (Å, °)

C1—C21.377 (5)C9—H90.93
C1—C61.385 (5)C10—C111.357 (6)
C1—N11.424 (4)C10—H100.93
C2—C31.381 (5)C11—C121.377 (5)
C2—C141.514 (5)C11—C161.518 (5)
C3—C41.394 (5)C12—C131.370 (5)
C3—H30.93C12—H120.93
C4—C51.375 (5)C13—H130.93
C4—C151.515 (5)C14—H14A0.96
C5—C61.367 (5)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—H60.93C15—H15A0.96
C7—O11.230 (4)C15—H15B0.96
C7—N11.329 (4)C15—H15C0.96
C7—C81.492 (5)C16—H16A0.96
C8—C131.360 (5)C16—H16B0.96
C8—C91.377 (5)C16—H16C0.96
C9—C101.384 (5)N1—H1N0.86
C2—C1—C6120.4 (3)C10—C11—C12117.1 (4)
C2—C1—N1120.3 (3)C10—C11—C16122.4 (4)
C6—C1—N1119.3 (3)C12—C11—C16120.6 (4)
C1—C2—C3118.6 (3)C13—C12—C11121.8 (4)
C1—C2—C14121.7 (3)C13—C12—H12119.1
C3—C2—C14119.7 (4)C11—C12—H12119.1
C2—C3—C4121.6 (4)C8—C13—C12120.7 (4)
C2—C3—H3119.2C8—C13—H13119.7
C4—C3—H3119.2C12—C13—H13119.7
C5—C4—C3118.3 (3)C2—C14—H14A109.5
C5—C4—C15122.2 (4)C2—C14—H14B109.5
C3—C4—C15119.5 (4)H14A—C14—H14B109.5
C6—C5—C4120.9 (4)C2—C14—H14C109.5
C6—C5—H5119.5H14A—C14—H14C109.5
C4—C5—H5119.5H14B—C14—H14C109.5
C5—C6—C1120.2 (4)C4—C15—H15A109.5
C5—C6—H6119.9C4—C15—H15B109.5
C1—C6—H6119.9H15A—C15—H15B109.5
O1—C7—N1122.0 (3)C4—C15—H15C109.5
O1—C7—C8120.6 (3)H15A—C15—H15C109.5
N1—C7—C8117.4 (3)H15B—C15—H15C109.5
C13—C8—C9118.5 (3)C11—C16—H16A109.5
C13—C8—C7119.3 (3)C11—C16—H16B109.5
C9—C8—C7122.0 (3)H16A—C16—H16B109.5
C8—C9—C10119.9 (4)C11—C16—H16C109.5
C8—C9—H9120.1H16A—C16—H16C109.5
C10—C9—H9120.1H16B—C16—H16C109.5
C11—C10—C9122.0 (4)C7—N1—C1125.0 (3)
C11—C10—H10119C7—N1—H1N117.5
C9—C10—H10119C1—N1—H1N117.5
C6—C1—C2—C31.3 (5)N1—C7—C8—C9−29.8 (5)
N1—C1—C2—C3−176.4 (3)C13—C8—C9—C10−0.4 (6)
C6—C1—C2—C14179.9 (3)C7—C8—C9—C10−175.4 (4)
N1—C1—C2—C142.2 (5)C8—C9—C10—C11−1.8 (7)
C1—C2—C3—C4−1.9 (5)C9—C10—C11—C121.9 (6)
C14—C2—C3—C4179.5 (3)C9—C10—C11—C16−179.4 (4)
C2—C3—C4—C51.4 (5)C10—C11—C12—C130.1 (6)
C2—C3—C4—C15179.7 (4)C16—C11—C12—C13−178.6 (4)
C3—C4—C5—C6−0.3 (6)C9—C8—C13—C122.3 (6)
C15—C4—C5—C6−178.6 (4)C7—C8—C13—C12177.4 (3)
C4—C5—C6—C1−0.2 (6)C11—C12—C13—C8−2.2 (6)
C2—C1—C6—C5−0.3 (5)O1—C7—N1—C1−5.1 (6)
N1—C1—C6—C5177.5 (3)C8—C7—N1—C1175.7 (3)
O1—C7—C8—C13−24.1 (5)C2—C1—N1—C7−75.0 (4)
N1—C7—C8—C13155.2 (3)C6—C1—N1—C7107.3 (4)
O1—C7—C8—C9150.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.862.072.884 (4)159

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2655).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2010). Private communication (refcode CCDC 691312). CCDC, Union Road, Cambridge, England.
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009b). Acta Cryst. E65, o2751. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009a). Acta Cryst. E65, o1612. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography