PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1094.
Published online 2010 April 17. doi:  10.1107/S1600536810013668
PMCID: PMC2979237

3-(4-Chloro­phen­yl)-5-phenyl-1,2,4-triazolo[3,4-a]isoquinoline

Abstract

In the title mol­ecule, C22H14ClN3, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.033 (2) Å and a maximum departure from the mean plane of 0.062 (1) Å for the triazole ring C atom, bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.02 (6) and 62.16 (6)°, respectively, to the mean plane of the triazoloisoquinoline ring system. The mol­ecule is stabilized by a weak intra­molecular π–π inter­action [centroid–centroid distance = 3.7089 (10) Å] between the benzene and phenyl rings. In the crystal structure, weak inter­molecular C—H(...)N hydrogen bonds and C—H(...)π inter­actions link the mol­ecules.

Related literature

For the synthesis and anti­helmintic activity of triazolo compounds similar to the title compound, see: Nadkarni et al. (2001 [triangle]); Hui et al. (1999 [triangle]). For related structures, see: Khan et al. (2010 [triangle]); Zou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1094-scheme1.jpg

Experimental

Crystal data

  • C22H14ClN3
  • M r = 355.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1094-efi1.jpg
  • a = 7.9841 (3) Å
  • b = 9.0679 (4) Å
  • c = 23.9881 (11) Å
  • β = 93.078 (4)°
  • V = 1734.20 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 290 K
  • 0.40 × 0.32 × 0.25 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.902, T max = 0.945
  • 19413 measured reflections
  • 3216 independent reflections
  • 2090 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.097
  • S = 0.97
  • 3216 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013668/bg2341sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013668/bg2341Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the FIST program for the data collection at SSCU, IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

As part of our search for new isoquinoline analogues, we focused on the synthesis of the titled compound, which crystal structure is reported.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is approximately planar, with an r.m.s. deviation of 0.033 (2) Å and a maximum departure from the mean plane of -0.062 (1) Å for the triazole ring C16 atom, bonded to the benzene ring (C17–C22). The benzene (C17–C22) and phenyl (C10–C15) rings are twisted by 57.02 (6) and 62.16 (6) ° with respect to the mean plane of the triazoloisoquinoline ring system. The dihedral angle betwen the benzene (C17–C22) and phenyl (C10–C15) rings is 22.21 (8)° .

The molecule is stabilized by a weak intramolecular π-π interaction [Cg4···Cg5(x, y, z) = 3.7089 (10) Å; Cg4 and Cg5 are the centroids of the rings C10–C15 and C17–C22, respectively]. In the crystal structure, weak intermolecular C—H···N hydrogen bonds and C—H···π interactions (Table 1, Fig. 2) link the molecules to each other.

Experimental

2-(3-Phenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with, 4-chlorobenzaldehyde (1.1 mmol) under refluxing conditions in isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of the solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement

H atoms were placed at calculated positions with C–H = 0.93 Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
A generel view of the packing diagram and the hydrogen bonding of (I). H atoms not involved in the motif shown have been omitted for clarity.

Crystal data

C22H14ClN3F(000) = 736
Mr = 355.81Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 953 reflections
a = 7.9841 (3) Åθ = 1.7–20.4°
b = 9.0679 (4) ŵ = 0.23 mm1
c = 23.9881 (11) ÅT = 290 K
β = 93.078 (4)°Block, colourless
V = 1734.20 (13) Å30.40 × 0.32 × 0.25 mm
Z = 4

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer3216 independent reflections
Radiation source: Enhance (Mo) X-ray Source2090 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)h = −9→9
Tmin = 0.902, Tmax = 0.945k = −10→10
19413 measured reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0512P)2] where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.31231 (8)0.36657 (7)0.47872 (2)0.0881 (2)
N10.59862 (15)0.38872 (12)0.21077 (5)0.0397 (3)
C90.76959 (18)0.38731 (15)0.23083 (7)0.0420 (4)
C70.84736 (19)0.37494 (16)0.13340 (7)0.0438 (4)
C80.8862 (2)0.37965 (16)0.19258 (7)0.0465 (4)
H80.99840.37730.20510.056*
C20.67799 (19)0.38170 (16)0.11339 (7)0.0428 (4)
C10.55381 (19)0.39096 (16)0.15404 (7)0.0421 (4)
C100.81034 (19)0.39579 (17)0.29162 (7)0.0434 (4)
C170.41623 (19)0.38678 (16)0.29626 (7)0.0438 (4)
C160.44668 (19)0.39497 (16)0.23649 (7)0.0435 (4)
N20.38951 (16)0.40120 (14)0.14584 (6)0.0515 (4)
N30.32375 (16)0.40415 (15)0.19789 (6)0.0514 (4)
C60.9712 (2)0.36397 (18)0.09438 (8)0.0555 (5)
H61.08370.36160.10660.067*
C200.3518 (2)0.3739 (2)0.40853 (7)0.0543 (5)
C180.4740 (2)0.26909 (18)0.32926 (7)0.0484 (4)
H180.53490.19400.31330.058*
C30.6365 (2)0.37670 (19)0.05624 (8)0.0577 (5)
H30.52480.38230.04320.069*
C190.4425 (2)0.26216 (19)0.38509 (7)0.0536 (5)
H190.48190.18320.40680.064*
C210.2899 (2)0.4902 (2)0.37646 (8)0.0608 (5)
H210.22710.56400.39230.073*
C50.9281 (2)0.3568 (2)0.03855 (8)0.0668 (5)
H51.01150.34730.01320.080*
C110.7686 (2)0.51875 (18)0.32226 (7)0.0519 (4)
H110.71760.59910.30420.062*
C220.3224 (2)0.49554 (19)0.32059 (8)0.0541 (5)
H220.28060.57350.29890.065*
C150.8920 (2)0.27925 (19)0.31932 (7)0.0552 (5)
H150.92450.19710.29930.066*
C120.8017 (2)0.5234 (2)0.37932 (8)0.0627 (5)
H120.77190.60620.39940.075*
C40.7606 (3)0.3635 (2)0.01925 (8)0.0705 (6)
H40.73290.3591−0.01890.085*
C140.9250 (2)0.2852 (2)0.37642 (8)0.0679 (6)
H140.97910.20670.39470.081*
C130.8784 (3)0.4062 (2)0.40646 (8)0.0692 (6)
H130.89880.40860.44500.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0944 (4)0.1095 (5)0.0616 (4)0.0059 (3)0.0163 (3)0.0034 (3)
N10.0311 (7)0.0376 (8)0.0498 (8)0.0006 (5)−0.0026 (6)−0.0017 (6)
C90.0333 (8)0.0365 (9)0.0552 (11)−0.0003 (7)−0.0060 (8)−0.0025 (7)
C70.0389 (9)0.0396 (10)0.0527 (11)−0.0010 (7)−0.0007 (8)−0.0034 (8)
C80.0324 (8)0.0480 (10)0.0579 (11)0.0006 (7)−0.0081 (8)−0.0035 (8)
C20.0394 (9)0.0379 (10)0.0506 (11)0.0012 (7)−0.0031 (8)−0.0051 (8)
C10.0369 (9)0.0377 (10)0.0507 (11)0.0006 (7)−0.0077 (8)−0.0028 (7)
C100.0359 (8)0.0429 (10)0.0505 (10)−0.0047 (7)−0.0054 (7)−0.0001 (8)
C170.0349 (8)0.0376 (10)0.0590 (11)−0.0045 (7)0.0047 (8)0.0024 (8)
C160.0346 (8)0.0368 (10)0.0589 (11)−0.0023 (7)0.0011 (8)0.0003 (8)
N20.0355 (8)0.0589 (10)0.0593 (10)−0.0008 (6)−0.0046 (7)−0.0029 (7)
N30.0361 (7)0.0562 (9)0.0614 (10)−0.0033 (6)−0.0009 (7)0.0018 (7)
C60.0410 (9)0.0599 (12)0.0654 (13)0.0036 (8)0.0017 (9)−0.0061 (9)
C200.0513 (10)0.0557 (12)0.0565 (12)−0.0062 (9)0.0074 (9)0.0003 (9)
C180.0453 (10)0.0369 (10)0.0634 (12)0.0004 (7)0.0058 (8)−0.0005 (9)
C30.0483 (10)0.0688 (13)0.0549 (12)0.0052 (9)−0.0065 (9)−0.0086 (9)
C190.0523 (11)0.0455 (11)0.0629 (12)−0.0016 (8)0.0012 (9)0.0083 (9)
C210.0576 (11)0.0516 (12)0.0750 (14)0.0062 (9)0.0187 (10)0.0001 (10)
C50.0571 (12)0.0837 (14)0.0604 (13)0.0074 (10)0.0111 (10)−0.0074 (11)
C110.0538 (11)0.0430 (10)0.0582 (12)−0.0032 (8)−0.0030 (9)−0.0006 (9)
C220.0489 (10)0.0447 (11)0.0695 (13)0.0059 (8)0.0103 (9)0.0087 (9)
C150.0503 (11)0.0506 (11)0.0636 (12)0.0043 (8)−0.0075 (9)0.0006 (9)
C120.0687 (12)0.0608 (13)0.0586 (13)−0.0125 (10)0.0018 (10)−0.0137 (10)
C40.0704 (14)0.0933 (16)0.0473 (11)0.0114 (11)−0.0019 (10)−0.0106 (10)
C140.0628 (12)0.0744 (14)0.0644 (14)0.0050 (11)−0.0154 (10)0.0145 (11)
C130.0693 (13)0.0853 (17)0.0517 (12)−0.0141 (12)−0.0087 (10)0.0011 (12)

Geometric parameters (Å, °)

Cl1—C201.7307 (18)C20—C211.381 (2)
N1—C11.3886 (19)C20—C191.383 (2)
N1—C161.3913 (19)C18—C191.377 (2)
N1—C91.4228 (18)C18—H180.9300
C9—C81.343 (2)C3—C41.371 (3)
C9—C101.479 (2)C3—H30.9300
C7—C61.401 (2)C19—H190.9300
C7—C21.412 (2)C21—C221.380 (2)
C7—C81.437 (2)C21—H210.9300
C8—H80.9300C5—C41.393 (3)
C2—C31.394 (2)C5—H50.9300
C2—C11.430 (2)C11—C121.381 (2)
C1—N21.3193 (19)C11—H110.9300
C10—C111.386 (2)C22—H220.9300
C10—C151.392 (2)C15—C141.382 (2)
C17—C221.386 (2)C15—H150.9300
C17—C181.393 (2)C12—C131.374 (3)
C17—C161.469 (2)C12—H120.9300
C16—N31.315 (2)C4—H40.9300
N2—N31.3804 (19)C14—C131.375 (3)
C6—C51.366 (2)C14—H140.9300
C6—H60.9300C13—H130.9300
C1—N1—C16104.42 (12)C19—C18—H18119.5
C1—N1—C9121.57 (13)C17—C18—H18119.5
C16—N1—C9133.95 (14)C4—C3—C2119.83 (17)
C8—C9—N1117.18 (14)C4—C3—H3120.1
C8—C9—C10123.53 (14)C2—C3—H3120.1
N1—C9—C10119.28 (14)C18—C19—C20119.27 (16)
C6—C7—C2118.25 (15)C18—C19—H19120.4
C6—C7—C8122.66 (15)C20—C19—H19120.4
C2—C7—C8119.09 (15)C22—C21—C20119.20 (17)
C9—C8—C7123.76 (14)C22—C21—H21120.4
C9—C8—H8118.1C20—C21—H21120.4
C7—C8—H8118.1C6—C5—C4120.67 (18)
C3—C2—C7120.39 (16)C6—C5—H5119.7
C3—C2—C1122.38 (14)C4—C5—H5119.7
C7—C2—C1117.21 (14)C12—C11—C10120.77 (16)
N2—C1—N1110.42 (15)C12—C11—H11119.6
N2—C1—C2128.52 (15)C10—C11—H11119.6
N1—C1—C2121.06 (13)C21—C22—C17121.20 (16)
C11—C10—C15118.54 (15)C21—C22—H22119.4
C11—C10—C9121.21 (14)C17—C22—H22119.4
C15—C10—C9120.25 (14)C14—C15—C10120.20 (17)
C22—C17—C18118.43 (16)C14—C15—H15119.9
C22—C17—C16119.77 (15)C10—C15—H15119.9
C18—C17—C16121.76 (15)C13—C12—C11120.20 (18)
N3—C16—N1109.02 (14)C13—C12—H12119.9
N3—C16—C17122.28 (14)C11—C12—H12119.9
N1—C16—C17128.65 (14)C3—C4—C5120.23 (18)
C1—N2—N3106.85 (13)C3—C4—H4119.9
C16—N3—N2109.26 (13)C5—C4—H4119.9
C5—C6—C7120.60 (16)C13—C14—C15120.54 (17)
C5—C6—H6119.7C13—C14—H14119.7
C7—C6—H6119.7C15—C14—H14119.7
C21—C20—C19120.84 (17)C12—C13—C14119.70 (18)
C21—C20—Cl1119.56 (15)C12—C13—H13120.2
C19—C20—Cl1119.60 (14)C14—C13—H13120.2
C19—C18—C17121.02 (16)
C1—N1—C9—C8−3.74 (19)C18—C17—C16—N1−55.3 (2)
C16—N1—C9—C8179.68 (14)N1—C1—N2—N3−0.67 (16)
C1—N1—C9—C10175.62 (12)C2—C1—N2—N3178.84 (14)
C16—N1—C9—C10−1.0 (2)N1—C16—N3—N21.22 (16)
N1—C9—C8—C70.9 (2)C17—C16—N3—N2−176.41 (12)
C10—C9—C8—C7−178.46 (13)C1—N2—N3—C16−0.35 (16)
C6—C7—C8—C9−178.68 (15)C2—C7—C6—C5−1.4 (2)
C2—C7—C8—C91.4 (2)C8—C7—C6—C5178.64 (15)
C6—C7—C2—C30.3 (2)C22—C17—C18—C19−1.5 (2)
C8—C7—C2—C3−179.71 (13)C16—C17—C18—C19−179.15 (14)
C6—C7—C2—C1179.22 (14)C7—C2—C3—C40.7 (2)
C8—C7—C2—C1−0.8 (2)C1—C2—C3—C4−178.11 (16)
C16—N1—C1—N21.37 (15)C17—C18—C19—C200.1 (2)
C9—N1—C1—N2−176.09 (12)C21—C20—C19—C181.3 (3)
C16—N1—C1—C2−178.19 (13)Cl1—C20—C19—C18−179.73 (12)
C9—N1—C1—C24.4 (2)C19—C20—C21—C22−1.3 (3)
C3—C2—C1—N2−2.6 (2)Cl1—C20—C21—C22179.77 (13)
C7—C2—C1—N2178.59 (14)C7—C6—C5—C41.5 (3)
C3—C2—C1—N1176.91 (13)C15—C10—C11—C12−2.3 (2)
C7—C2—C1—N1−1.9 (2)C9—C10—C11—C12177.63 (15)
C8—C9—C10—C11116.02 (18)C20—C21—C22—C17−0.2 (3)
N1—C9—C10—C11−63.30 (19)C18—C17—C22—C211.6 (2)
C8—C9—C10—C15−64.0 (2)C16—C17—C22—C21179.24 (15)
N1—C9—C10—C15116.67 (16)C11—C10—C15—C142.2 (2)
C1—N1—C16—N3−1.56 (15)C9—C10—C15—C14−177.82 (15)
C9—N1—C16—N3175.42 (14)C10—C11—C12—C130.7 (3)
C1—N1—C16—C17175.88 (14)C2—C3—C4—C5−0.7 (3)
C9—N1—C16—C17−7.1 (2)C6—C5—C4—C3−0.4 (3)
C22—C17—C16—N3−55.7 (2)C10—C15—C14—C13−0.3 (3)
C18—C17—C16—N3121.87 (17)C11—C12—C13—C141.2 (3)
C22—C17—C16—N1127.15 (17)C15—C14—C13—C12−1.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1/C16, N1/C1/C2/C7–C9 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.593.514 (2)170
C8—H8···N3i0.932.623.496 (2)156
C18—H18···Cg1ii0.932.703.4524 (17)138
C21—H21···Cg3iii0.932.893.7139 (19)149
C22—H22···Cg2iii0.932.903.5442 (18)128

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2341).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (1999). Indian J. Chem. Sect. B, 38, 1066–1069.
  • Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488. [PMC free article] [PubMed]
  • Nadkarni, B. A., Kamat, V. R. & Khadse, B. G. (2001). Arzneim. Forsch.51, 569–573. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zou, K.-H., Cai, X.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. & Hu, M.-L. (2004). Acta Cryst. E60, o1736–o1738.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography