PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1045–o1046.
Published online 2010 April 10. doi:  10.1107/S1600536810012407
PMCID: PMC2979229

Ethenzamide–gentisic acid–acetic acid (2/1/1)

Abstract

In the title co-crystal solvate, 2-ethoxy­benzamide–2,5-dihydroxy­benzoic acid–ethanoic acid (2/1/1), 2C9H11NO2·C7H6O4·C2H4O2, two nonsteroidal anti-inflammatory drugs, ethenzamide (systematic name: 2-ethoxy­benzamide) and gentisic acid (systematic name: 2,5-dihydroxy­benzoic acid), together with acetic acid (systematic name: ethanoic acid) form a four-component mol­ecular assembly held together by N—H(...)O and O—H(...)O hydrogen bonds. This assembly features two symmetry-independent mol­ecules of ethenzamide, forming supra­molecular acid–amide heterosynthons with gentisic acid and acetic acid. These heterosynthons involve quite strong O—H(...)O [O(...)O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H(...)O [N(...)O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds. The overall crystal packing features several C—H(...)O and π–π stacking inter­actions [centroid–centroid distance = 3.7792 (11) Å].

Related literature

For information on three polymorphs of a 1:1 co-crystal involving ethenzamide and gentisic acid, see: Aitipamula et al. (2009a [triangle]). For other co-crystals of ethenzamide, see: Aitipamula et al. (2009b [triangle]); Moribe et al. (2004 [triangle]). For related information on the drug activity of ethenzamide, see: Hirasawa et al. (1999 [triangle]). For the crystal structure of ethenzamide, see: Pagola & Stephens (2009 [triangle]). For related information on the drug activity of gentisic acid, see: Lorico et al. (1986 [triangle]). For more information on the supra­molecular heterosynthons, see: Fleischman et al. (2003 [triangle]). For reviews on pharmaceutical co-crystals, see: Schultheiss & Newman (2009 [triangle]); Almarsson & Zaworotko (2004 [triangle]). For more information on the hydrogen bonding, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1045-scheme1.jpg

Experimental

Crystal data

  • 2C9H11NO2·C7H6O4·C2H4O2
  • M r = 544.55
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1045-efi1.jpg
  • a = 8.8083 (18) Å
  • b = 8.8802 (18) Å
  • c = 19.880 (4) Å
  • α = 93.65 (3)°
  • β = 93.55 (3)°
  • γ = 119.45 (3)°
  • V = 1343.5 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 110 K
  • 0.33 × 0.29 × 0.22 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.967, T max = 0.978
  • 19296 measured reflections
  • 6594 independent reflections
  • 6074 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.135
  • S = 1.11
  • 6594 reflections
  • 380 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012407/fb2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012407/fb2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Institute of Chemical and Engineering Sciences of A*STAR (Agency for Science, Technology and Research), Singapore.

supplementary crystallographic information

Comment

Ethenzamide (2-ethoxybenzamide) belongs to a non-steroidal anti-inflammatory drug (NSAID) used mainly in combination with other ingredients for the treatment of mild to moderate pains (Hirasawa et al., 1999). The crystal structure of ethenzamide has been recently solved using the high-resolution powder X-ray diffraction (Pagola & Stephens, 2009). Gentisic acid (2,5-dihydroxybenzoic acid) is also a NSAID (Lorico et al., 1986).

Pharmaceutical cocrystals can be defined as molecular complexes formed between a neutral or ionic active pharmaceutical ingredient (API) and a pharmaceutically acceptable compound that is a solid under ambient conditions (Almarsson & Zaworotko, 2004). With our interest in pharmaceutical cocrystals and polymorphism, we recently reported three polymorphs of a 1:1 cocrystal involving ethenzamide and gentisic acid, and showed that the dissolution rates of the cocrystal polymorphs were improved twice when compared to that of the parent ethenzamide (Aitipamula et al., 2009a).

In attempt to prepare pure polymorphs of a cocrystal involving ethenzamide and gentisic acid, they were cocrystallized in 1:1 molar ratio from several organic solvents. Whereas all the crystallization batches resulted in reported 1:1 cocrystal polymorphs (Aitipamula et al., 2009a), crystallization from acetic acid yielded a solvate in which the ethenzamide, gentisic acid, and acetic acid were present in 2:1:1 molar ratio. We present here its crystal structure and analyze the hydrogen bonding.

The crystal structure contains two molecules of ethenzamide, one molecule of gentisic acid and one molecule of acetic acid in the asymmetric unit (Fig. 1). In the structure, gentisic acid and acetic acid molecules are engaged in the formation of acid-amide heterosynthons with symmetry independent molecules of ethenzamide involving quite strong O—H···O [O···O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds (Table 1) (Desiraju & Steiner, 1999). The anti-N—H of the primary amide of ethenzamide and the 2-hydroxy group of gentisic acid form an intramolecular N—H···O [N···O = 2.6472 (19) and 2.6536 (16) Å] and O—H···O [O···O = 2.6183 (15)] hydrogen bonds, respectively (Table 1). Hydroxy atom of O8 of the gentisic acid acts as a hydrogen bond donor to atom O9 of the acetic acid at (2-x,1-y,1-z), and generates a four-component molecular assembly which involves two molecules of ethenzamide, one molecule each of gentisic acid and acetic acid (Fig. 2). It is worth mentioning that the solvent (acetic acid) molecule is an integral part of the four-component molecular assembly, which is bonded in the same way as the remaining constituents that participate in the heterosynthon formation. The four-component molecular assemblies are further stabilized in the crystal structure by various C—H···O interactions (Table 1) (Desiraju & Steiner, 1999), and by the π-π stacking interaction involving the phenyl rings of the molecules of ethenzamide and gentisic acid: Cg1···Cg2 (1-x, 1-y, 1-z) = 3.7792 (11) Å, where Cg1 and Cg2 denote the centroids of the rings C1—C6 and C19—C24 of ethenzamide and gentisic acid, respectively (Fig. 3).

In the light of the overwhelming interest in the development of pharmaceutical cocrystals for improving the physico-chemical properties of the APIs (Schultheiss & Newman, 2009), the title cocrystal solvate reported here presents some special features. First, it contains two APIs and thus can be considered as a multi-API cocrystal. Second, it contains the pharmaceutically acceptable acetic acid in the crystal structure. These two aspects make the title cocrystal solvate a potential solid form for development of a combination drug involving ethenzamide and gentisic acid.

Experimental

The title cocrystal solvate was obtained by slow evaporation of a glacial acetic acid (5 ml) solution of a 1:1 molar ratio of ethenzamide (100 mg, 0.605 mmol) and gentisic acid (93.3 mg, 0.605 mmol) at ambinent conditions. The block-shaped crystals, the dimensions of which were typically as those of the used sample for data collection, were obtained within 7 days.

Refinement

Though all the H-atoms could be dinstinguished in the difference electron density map, the H-atoms bonded to C-atoms were included at the geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å (aryl), 0.99 Å (methylene), and 0.98 Å (methyl). Uiso(H)aryl/methylene=1.2 Ueq(C) and Uiso(H)methyl=1.5 Ueq(C). The positional parameters of the H-atoms bonded to N and O were allowed to be refined freely while Uiso(H)amine=1.2 Ueq(N) and Uiso(H)hydroxyl=1.5 Ueq(O).

Figures

Fig. 1.
The title molecules of ethenzamide, gentisic acid and aceitic acid with the atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The hydrogen bonded four-component molecular assembly in the crystal structure of the title cocrystal solvate. Atoms participating in the hydrogen bonding were labelled.
Fig. 3.
Section of the crystal structure, showing the π-π stacking interaction between the aromatic rings of the four-component molecular assemblies.

Crystal data

2C9H11NO2·C7H6O4·C2H4O2Z = 2
Mr = 544.55F(000) = 576
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8083 (18) ÅCell parameters from 3760 reflections
b = 8.8802 (18) Åθ = 2.1–31.0°
c = 19.880 (4) ŵ = 0.10 mm1
α = 93.65 (3)°T = 110 K
β = 93.55 (3)°Block, yellow
γ = 119.45 (3)°0.33 × 0.29 × 0.22 mm
V = 1343.5 (6) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer6594 independent reflections
Radiation source: fine-focus sealed tube6074 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (Blessing, 1995)h = −11→11
Tmin = 0.967, Tmax = 0.978k = −11→9
19296 measured reflectionsl = −26→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2882P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6594 reflectionsΔρmax = 0.25 e Å3
380 parametersΔρmin = −0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.18598 (11)0.96579 (12)0.43017 (5)0.0280 (2)
O91.05478 (12)0.54627 (13)0.63748 (5)0.0319 (2)
O3−0.22283 (12)0.57234 (13)0.51754 (5)0.0324 (2)
O100.76432 (12)0.38996 (13)0.61300 (5)0.0316 (2)
H200.781 (2)0.464 (3)0.5756 (10)0.047*
N20.06949 (14)0.72419 (16)0.51542 (6)0.0281 (2)
H100.079 (2)0.668 (2)0.5509 (9)0.034*
H70.159 (2)0.811 (2)0.5000 (9)0.034*
C16−0.09157 (16)0.68847 (16)0.49396 (6)0.0249 (2)
C110.01615 (16)0.92217 (16)0.41021 (6)0.0251 (3)
C12−0.02542 (17)1.00581 (18)0.36157 (7)0.0295 (3)
H120.06541.09580.34090.035*
C180.49661 (17)1.13984 (19)0.43493 (7)0.0325 (3)
H18A0.50371.16040.48430.049*
H18B0.59321.24030.41800.049*
H18C0.50501.03560.42290.049*
C170.32440 (16)1.11405 (17)0.40346 (7)0.0285 (3)
H17A0.31501.21910.41490.034*
H17B0.31551.09250.35350.034*
C10−0.11871 (16)0.78677 (16)0.44080 (6)0.0246 (2)
C15−0.29227 (16)0.74279 (17)0.42099 (7)0.0277 (3)
H15−0.38440.65260.44110.033*
C13−0.19922 (18)0.95831 (18)0.34313 (7)0.0308 (3)
H13−0.22641.01620.30990.037*
C260.91047 (17)0.43317 (17)0.65051 (7)0.0283 (3)
C14−0.33339 (17)0.82690 (18)0.37295 (7)0.0308 (3)
H14−0.45210.79510.36050.037*
C270.8867 (2)0.3342 (2)0.71097 (8)0.0371 (3)
H27A0.98740.31680.71990.056*
H27B0.77910.22090.70200.056*
H27C0.87800.40010.75050.056*
O10.91975 (12)0.71644 (12)1.01611 (5)0.0296 (2)
O20.45825 (12)0.67508 (13)0.93005 (5)0.0298 (2)
C10.66698 (16)0.57974 (16)0.93614 (6)0.0247 (2)
N10.75912 (17)0.84922 (16)1.00868 (6)0.0322 (3)
H10.656 (2)0.845 (2)0.9926 (9)0.039*
H20.829 (2)0.926 (2)1.0438 (9)0.039*
C70.78960 (16)0.72148 (16)0.98983 (6)0.0254 (2)
C20.50360 (17)0.55485 (16)0.90874 (6)0.0262 (3)
C60.71780 (18)0.46025 (17)0.91414 (7)0.0291 (3)
H60.82780.47600.93210.035*
C80.28786 (17)0.65018 (19)0.90704 (7)0.0316 (3)
H8A0.19400.54340.92280.038*
H8B0.27100.63940.85690.038*
C90.2832 (2)0.8079 (2)0.93678 (8)0.0388 (3)
H9A0.30250.81810.98630.058*
H9B0.16870.79610.92320.058*
H9C0.37550.91230.92010.058*
C40.44999 (19)0.29481 (18)0.84136 (7)0.0344 (3)
H40.37590.19740.80930.041*
C30.39524 (18)0.41077 (18)0.86209 (7)0.0314 (3)
H30.28390.39210.84450.038*
C50.61151 (19)0.31929 (18)0.86680 (7)0.0330 (3)
H50.64890.24020.85190.040*
O80.70122 (13)0.23351 (13)0.25999 (5)0.0327 (2)
H190.784 (3)0.317 (3)0.2955 (10)0.049*
O60.13707 (13)−0.09895 (13)0.11728 (5)0.0319 (2)
H110.039 (3)−0.166 (3)0.0787 (10)0.048*
O5−0.01505 (12)0.03810 (13)0.13600 (5)0.0327 (2)
O70.10781 (13)0.29851 (13)0.23160 (5)0.0325 (2)
H160.033 (3)0.217 (3)0.1981 (10)0.049*
C240.41450 (17)0.13298 (16)0.20904 (6)0.0254 (2)
H240.42100.04170.18420.030*
C220.54594 (17)0.38590 (17)0.29022 (6)0.0285 (3)
H220.64320.46910.32070.034*
C230.55542 (16)0.25175 (17)0.25389 (6)0.0264 (3)
C190.26205 (16)0.14500 (16)0.19962 (6)0.0248 (2)
C250.11617 (17)0.02315 (16)0.14875 (6)0.0262 (3)
C210.39528 (17)0.39826 (17)0.28208 (7)0.0285 (3)
H210.38940.48900.30760.034*
C200.25202 (17)0.27906 (17)0.23681 (6)0.0263 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0206 (4)0.0310 (5)0.0326 (5)0.0122 (4)0.0044 (3)0.0081 (4)
O90.0255 (4)0.0373 (5)0.0296 (5)0.0130 (4)0.0020 (3)0.0044 (4)
O30.0221 (4)0.0334 (5)0.0383 (5)0.0106 (4)0.0038 (4)0.0089 (4)
O100.0241 (4)0.0338 (5)0.0340 (5)0.0119 (4)0.0045 (4)0.0054 (4)
N20.0215 (5)0.0322 (6)0.0288 (5)0.0116 (4)0.0025 (4)0.0071 (4)
C160.0222 (5)0.0254 (6)0.0258 (6)0.0112 (5)0.0028 (4)−0.0010 (4)
C110.0230 (5)0.0271 (6)0.0257 (6)0.0136 (5)0.0007 (4)−0.0018 (5)
C120.0292 (6)0.0305 (6)0.0301 (6)0.0160 (5)0.0026 (5)0.0035 (5)
C180.0246 (6)0.0338 (7)0.0383 (7)0.0130 (5)0.0055 (5)0.0097 (6)
C170.0243 (6)0.0285 (6)0.0314 (6)0.0115 (5)0.0059 (5)0.0068 (5)
C100.0234 (6)0.0246 (6)0.0251 (6)0.0121 (5)0.0010 (4)−0.0025 (4)
C150.0234 (6)0.0258 (6)0.0308 (6)0.0111 (5)−0.0010 (5)−0.0037 (5)
C130.0327 (7)0.0301 (7)0.0317 (6)0.0185 (5)−0.0046 (5)−0.0006 (5)
C260.0293 (6)0.0302 (6)0.0275 (6)0.0166 (5)0.0049 (5)0.0002 (5)
C140.0254 (6)0.0301 (7)0.0359 (7)0.0149 (5)−0.0050 (5)−0.0040 (5)
C270.0446 (8)0.0372 (8)0.0330 (7)0.0220 (6)0.0083 (6)0.0079 (6)
O10.0282 (4)0.0290 (5)0.0326 (5)0.0159 (4)−0.0005 (4)−0.0008 (4)
O20.0302 (5)0.0331 (5)0.0305 (5)0.0195 (4)0.0020 (4)0.0017 (4)
C10.0276 (6)0.0228 (6)0.0231 (6)0.0117 (5)0.0045 (4)0.0048 (4)
N10.0356 (6)0.0299 (6)0.0338 (6)0.0201 (5)−0.0035 (5)−0.0042 (5)
C70.0280 (6)0.0238 (6)0.0253 (6)0.0130 (5)0.0050 (4)0.0054 (4)
C20.0299 (6)0.0275 (6)0.0235 (6)0.0154 (5)0.0062 (5)0.0060 (5)
C60.0309 (6)0.0281 (6)0.0306 (6)0.0162 (5)0.0053 (5)0.0039 (5)
C80.0275 (6)0.0372 (7)0.0342 (7)0.0186 (6)0.0047 (5)0.0091 (5)
C90.0370 (7)0.0420 (8)0.0474 (8)0.0261 (7)0.0089 (6)0.0101 (6)
C40.0375 (7)0.0292 (7)0.0298 (7)0.0123 (6)0.0017 (5)−0.0008 (5)
C30.0299 (6)0.0316 (7)0.0290 (6)0.0126 (5)0.0018 (5)0.0025 (5)
C50.0391 (7)0.0288 (7)0.0332 (7)0.0188 (6)0.0052 (5)−0.0001 (5)
O80.0291 (5)0.0363 (5)0.0357 (5)0.0198 (4)−0.0039 (4)−0.0006 (4)
O60.0344 (5)0.0295 (5)0.0336 (5)0.0193 (4)−0.0058 (4)−0.0050 (4)
O50.0278 (5)0.0350 (5)0.0357 (5)0.0176 (4)−0.0032 (4)−0.0034 (4)
O70.0290 (5)0.0329 (5)0.0383 (5)0.0185 (4)0.0006 (4)−0.0026 (4)
C240.0287 (6)0.0240 (6)0.0249 (6)0.0141 (5)0.0025 (4)0.0037 (4)
C220.0297 (6)0.0260 (6)0.0257 (6)0.0110 (5)0.0007 (5)0.0016 (5)
C230.0260 (6)0.0278 (6)0.0266 (6)0.0142 (5)0.0021 (4)0.0054 (5)
C190.0255 (6)0.0235 (6)0.0243 (6)0.0113 (5)0.0019 (4)0.0037 (4)
C250.0271 (6)0.0255 (6)0.0266 (6)0.0135 (5)0.0029 (4)0.0040 (5)
C210.0314 (6)0.0254 (6)0.0287 (6)0.0142 (5)0.0034 (5)0.0012 (5)
C200.0269 (6)0.0264 (6)0.0270 (6)0.0138 (5)0.0045 (4)0.0051 (5)

Geometric parameters (Å, °)

O4—C111.3720 (15)C1—C71.4965 (19)
O4—C171.4466 (16)N1—C71.3256 (17)
O9—C261.2289 (17)N1—H10.930 (19)
O3—C161.2555 (16)N1—H20.90 (2)
O10—C261.3112 (17)C2—C31.395 (2)
O10—H200.99 (2)C6—C51.385 (2)
N2—C161.3269 (16)C6—H60.9500
N2—H100.913 (18)C8—C91.506 (2)
N2—H70.879 (18)C8—H8A0.9900
C16—C101.4924 (19)C8—H8B0.9900
C11—C121.3913 (19)C9—H9A0.9800
C11—C101.4159 (18)C9—H9B0.9800
C12—C131.3899 (18)C9—H9C0.9800
C12—H120.9500C4—C51.386 (2)
C18—C171.5058 (18)C4—C31.386 (2)
C18—H18A0.9800C4—H40.9500
C18—H18B0.9800C3—H30.9500
C18—H18C0.9800C5—H50.9500
C17—H17A0.9900O8—C231.3705 (16)
C17—H17B0.9900O8—H190.96 (2)
C10—C151.4012 (17)O6—C251.3134 (16)
C15—C141.384 (2)O6—H111.02 (2)
C15—H150.9500O5—C251.2397 (16)
C13—C141.389 (2)O7—C201.3622 (16)
C13—H130.9500O7—H160.90 (2)
C26—C271.499 (2)C24—C231.3798 (19)
C14—H140.9500C24—C191.4007 (18)
C27—H27A0.9800C24—H240.9500
C27—H27B0.9800C22—C211.3849 (19)
C27—H27C0.9800C22—C231.3941 (19)
O1—C71.2523 (16)C22—H220.9500
O2—C21.3644 (16)C19—C201.4040 (18)
O2—C81.4444 (16)C19—C251.4756 (19)
C1—C61.3963 (18)C21—C201.3955 (19)
C1—C21.4112 (18)C21—H210.9500
C11—O4—C17117.67 (10)O1—C7—N1121.31 (12)
C26—O10—H20113.5 (11)O1—C7—C1118.85 (12)
C16—N2—H10116.3 (11)N1—C7—C1119.85 (12)
C16—N2—H7119.0 (11)O2—C2—C3122.70 (12)
H10—N2—H7123.8 (16)O2—C2—C1117.45 (11)
O3—C16—N2121.07 (12)C3—C2—C1119.85 (12)
O3—C16—C10119.00 (11)C5—C6—C1121.49 (13)
N2—C16—C10119.93 (12)C5—C6—H6119.3
O4—C11—C12122.18 (12)C1—C6—H6119.3
O4—C11—C10117.69 (11)O2—C8—C9106.37 (12)
C12—C11—C10120.13 (12)O2—C8—H8A110.5
C13—C12—C11120.32 (13)C9—C8—H8A110.5
C13—C12—H12119.8O2—C8—H8B110.5
C11—C12—H12119.8C9—C8—H8B110.5
C17—C18—H18A109.5H8A—C8—H8B108.6
C17—C18—H18B109.5C8—C9—H9A109.5
H18A—C18—H18B109.5C8—C9—H9B109.5
C17—C18—H18C109.5H9A—C9—H9B109.5
H18A—C18—H18C109.5C8—C9—H9C109.5
H18B—C18—H18C109.5H9A—C9—H9C109.5
O4—C17—C18107.57 (11)H9B—C9—H9C109.5
O4—C17—H17A110.2C5—C4—C3120.78 (13)
C18—C17—H17A110.2C5—C4—H4119.6
O4—C17—H17B110.2C3—C4—H4119.6
C18—C17—H17B110.2C4—C3—C2120.05 (13)
H17A—C17—H17B108.5C4—C3—H3120.0
C15—C10—C11117.89 (12)C2—C3—H3120.0
C15—C10—C16116.73 (12)C6—C5—C4119.29 (13)
C11—C10—C16125.37 (11)C6—C5—H5120.4
C14—C15—C10121.93 (13)C4—C5—H5120.4
C14—C15—H15119.0C23—O8—H19109.3 (12)
C10—C15—H15119.0C25—O6—H11110.3 (11)
C14—C13—C12120.47 (13)C20—O7—H16105.4 (13)
C14—C13—H13119.8C23—C24—C19120.98 (12)
C12—C13—H13119.8C23—C24—H24119.5
O9—C26—O10122.84 (13)C19—C24—H24119.5
O9—C26—C27122.78 (13)C21—C22—C23120.24 (12)
O10—C26—C27114.38 (12)C21—C22—H22119.9
C15—C14—C13119.25 (12)C23—C22—H22119.9
C15—C14—H14120.4O8—C23—C24117.91 (12)
C13—C14—H14120.4O8—C23—C22122.62 (12)
C26—C27—H27A109.5C24—C23—C22119.46 (12)
C26—C27—H27B109.5C24—C19—C20119.47 (12)
H27A—C27—H27B109.5C24—C19—C25120.45 (12)
C26—C27—H27C109.5C20—C19—C25120.02 (12)
H27A—C27—H27C109.5O5—C25—O6122.74 (12)
H27B—C27—H27C109.5O5—C25—C19121.85 (12)
C2—O2—C8119.79 (11)O6—C25—C19115.40 (11)
C6—C1—C2118.51 (12)C22—C21—C20120.82 (12)
C6—C1—C7116.30 (12)C22—C21—H21119.6
C2—C1—C7125.14 (12)C20—C21—H21119.6
C7—N1—H1120.7 (11)O7—C20—C21117.69 (12)
C7—N1—H2117.4 (12)O7—C20—C19123.28 (12)
H1—N1—H2120.6 (16)C21—C20—C19119.02 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.926 (19)1.941 (18)2.6472 (19)131.6 (14)
N1—H2···O5i0.90 (2)2.085 (18)2.9550 (17)163.0 (15)
N2—H7···O40.879 (18)1.959 (17)2.6536 (16)135.0 (17)
N2—H10···O9ii0.912 (18)2.057 (17)2.9542 (17)167.4 (17)
O6—H11···O1iii1.02 (2)1.53 (2)2.5327 (15)167.0 (18)
O7—H16···O50.90 (2)1.80 (2)2.6183 (15)149 (3)
O8—H19···O9iv0.96 (2)1.77 (2)2.7231 (16)173 (2)
O10—H20···O3v0.99 (2)1.56 (2)2.5446 (15)171 (2)
C8—H8A···O1vi0.992.463.3768 (19)154
C13—H13···O8vii0.952.553.452 (2)159
C14—H14···O10viii0.952.533.348 (2)145

Symmetry codes: (i) x+1, y+1, z+1; (ii) x−1, y, z; (iii) x−1, y−1, z−1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) x−1, y+1, z; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2192).

References

  • Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009a). CrystEngComm, 11, 1823–1827.
  • Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009b). CrystEngComm, 11, 889–895.
  • Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press.
  • Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  • Hirasawa, N., Okamoto, H. & Danjo, K. (1999). Chem. Pharm. Bull.47, 417–420. [PubMed]
  • Lorico, A., Masturzo, P., Villa, S., Salmona, M., Semeraro, N. & Gaetano, G. D. (1986). Biochem. Pharmacol.35, 2443–2445. [PubMed]
  • Moribe, K., Tsuchiya, M., Tozuka, Y., Yamaguchi, K., Oguchi, T. & Yamamoto, K. (2004). Chem. Pharm. Bull.52, 524–529. [PubMed]
  • Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586. [PubMed]
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des.9, 2950–2967. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography